1,456 research outputs found

    Gravitational radiation timescales for extreme mass ratio inspirals

    Full text link
    The capture and inspiral of compact stellar masses into massive black holes is an important source of low-frequency gravitational waves (with frequencies of ~1-100mHz), such as those that might be detected by the planned Laser Interferometer Space Antenna (LISA). Simulations of stellar clusters designed to study this problem typically rely on simple treatments of the black hole encounter which neglect some important features of orbits around black holes, such as the minimum radii of stable, non-plunging orbits. Incorporating an accurate representation of the orbital dynamics near a black hole has been avoided due to the large computational overhead. This paper provides new, more accurate, expressions for the energy and angular momentum lost by a compact object during a parabolic encounter with a non-spinning black hole, and the subsequent inspiral lifetime. These results improve on the Keplerian expressions which are now commonly used and will allow efficient computational simulations to be performed that account for the relativistic nature of the spacetime around the central black hole in the system.Comment: 19 pages, 4 figures. Changed in response to referee's report. Accepted for publication in Astrophysical Journa

    Shear thickening of cornstarch suspensions as a re-entrant jamming transition

    Get PDF
    We study the rheology of cornstarch suspensions, a dense system of non-Brownian particles that exhibits shear thickening, i.e. a viscosity that increases with increasing shear rate. Using MRI velocimetry we show that the suspension has a yield stress. From classical rheology it follows that as a function of the applied stress the suspension is first solid (yield stress), then liquid and then solid again when it shear thickens. The onset shear rate for thickening is found to depend on the measurement geometry: the smaller the gap of the shear cell, the lower the shear rate at which thickening occurs. Shear thickening can then be interpreted as the consequence of the Reynolds dilatancy: the system under flow wants to dilate but instead undergoes a jamming transition because it is confined, as confirmed by measurement of the dilation of the suspension as a function of the shear rate

    AN ECONOMIC ANALYSIS OF GENETIC INFORMATION: LEPTIN GENOTYPING IN FED CATTLE

    Get PDF
    The use of genetic knowledge is widespread in crop production but is just recently being utilized in livestock production. This study investigates the economic value to feedlots of a polymorphism in the bovine leptin gene. Previous studies indicate that this polymorphism is associated with fat deposition. Since fed cattle are often priced on a grid that considers both yield and quality grades, fat deposition is an important factor in the value and profitability of fed cattle. Using data from 590 crossbred steers and heifers, we estimate growth curves for relevant biological traits, both with and without genotypic information. Using the resulting functions, we then simulate carcass traits to various days-on-feed and compute the associated profit under three price grids. Maximum profits are determined in an unconstrained profit maximization model and in a model that constrains cattle to be marketed in 45-head "potloads." Results indicate that leptin genotypic knowledge has little impact on optimal days-on-feed but may play a role in valuing feeder cattle. The differences in value of cattle varied by as much as $37 per head between genotypes.genetics, leptin genotype, beef cattle, value of information, Livestock Production/Industries,

    Envelope Structure of Starless Core L694-2 Derived from a Near-Infrared Extinction Map

    Full text link
    We present a near-infrared extinction study of the dark globule L694-2, a starless core that shows strong evidence for inward motions in molecular line profiles. The J,H, and K band data were taken using the European Southern Observatory New Technology Telescope. The best fit simple spherical power law model has index p=2.6 +/- 0.2, over the 0.036--0.1 pc range in radius sampled in extinction. This power law slope is steeper than the value of p=2 for a singular isothermal sphere, the initial condition of the inside-out model for protostellar collapse. Including an additional extinction component along the line of sight further steepens the inferred profile. Fitting a Bonnor-Ebert sphere results in a super-critical value of the dimensionless radius xi_max=25 +/- 3. The unstable configuration of material may be related to the observed inward motions. The Bonnor-Ebert model matches the shape of the observed profile, but significantly underestimates the amount of extinction (by a factor of ~4). This discrepancy in normalization has also been found for the nearby protostellar core B335 (Harvey et al. 2001). A cylindrical density model with scale height H=0.0164+/- 0.002 pc viewed at a small inclination to the cylinder axis provides an equally good radial profile as a power law model, and reproduces the asymmetry of the core remarkably well. In addition, this model provides a basis for understanding the discrepancy in the normalization of the Bonnor-Ebert model, namely that L694-2 has prolate structure, with the full extent (mass) of the core being missed by assuming symmetry between the profiles in the plane of the sky and along the line-of-sight. If the core is sufficiently magnetized then fragmentation may be avoided, and later evolution might produce a protostar similar to B335.Comment: 38 pages, 7 figures, accepted to Astrophysical Journa

    Semi-Relativistic Approximation to Gravitational Radiation from Encounters with Non-Spinning Black Holes

    Get PDF
    The capture of compact bodies by black holes in galactic nuclei is an important prospective source for low frequency gravitational wave detectors, such as the planned Laser Interferometer Space Antenna. This paper calculates, using a semirelativistic approximation, the total energy and angular momentum lost to gravitational radiation by compact bodies on very high eccentricity orbits passing close to a supermassive, nonspinning black hole; these quantities determine the characteristics of the orbital evolution necessary to estimate the capture rate. The semirelativistic approximation improves upon treatments which use orbits at Newtonian order and quadrupolar radiation emission, and matches well onto accurate Teukolsky simulations for low eccentricity orbits. Formulas are presented for the semirelativistic energy and angular momentum fluxes as a function of general orbital parameters

    Flow of wet granular materials

    Get PDF
    The transition from frictional to lubricated flow of a dense suspension of non-Brownian particles is studied. The pertinent parameter characterizing this transition is the Leighton number Le=ηsγ˙σLe = \frac{\eta_s \dot{\gamma}}{\sigma}, which represents the ratio of lubrication to frictional forces. The Leighton number LeLe defines a critical shear rate below which no steady flow without localization exists. In the frictional regime the shear flow is localized. The lubricated regime is not simply viscous: the ratio of shear to normal stresses remains constant, as in the frictional regime; moreover the velocity profile has a single universal form in both frictional and lubricated regimes. Finally, a discrepancy between local and global measurements of viscosity is identified, which suggests inhomogeneity of the material under flow.Comment: Accepted for publication by Physical Review Letters (december 2004

    Semi-relativistic approximation to gravitational radiation from encounters with nonspinning black holes

    Full text link
    The capture of compact bodies by black holes in galactic nuclei is an important prospective source for low frequency gravitational wave detectors, such as the planned Laser Interferometer Space Antenna. This paper calculates, using a semirelativistic approximation, the total energy and angular momentum lost to gravitational radiation by compact bodies on very high eccentricity orbits passing close to a supermassive, nonspinning black hole; these quantities determine the characteristics of the orbital evolution necessary to estimate the capture rate. The semirelativistic approximation improves upon treatments which use orbits at Newtonian-order and quadrupolar radiation emission, and matches well onto accurate Teukolsky simulations for low eccentricity orbits. Formulae are presented for the semirelativistic energy and angular momentum fluxes as a function of general orbital parameters.Comment: 27 pages, 12 figures; v2: revised manuscript includes small changes to make paper consistent with published version; v3: a statement about how to generalise our results to hyperbolic orbits was incorrect, new version includes published erratum as an appendi

    Simple Models for Turbulent Self-Regulation in Galaxy Disks

    Get PDF
    We propose that turbulent heating, wave pressure and gas exchanges between different regions of disks play a dominant role in determining the preferred, quasi-equilibrium, self-similar states of gas disks on large-scales. We present simple families of analytic, thermohydrodynamic models for these global states, which include terms for turbulent pressure and Reynolds stresses. Star formation rates, phase balances, and hydrodynamic forces are all tightly coupled and balanced. The models have stratified radial flows, with the cold gas slowly flowing inward in the midplane of the disk, and with the warm/hot phases that surround the midplane flowing outward. The models suggest a number of results that are in accord with observation, as well as some novel predictions, including the following. 1) The large-scale gas density and thermal phase distributions in galaxy disks can be explained as the result of turbulent heating and spatial couplings. 2) The turbulent pressures and stresses that drive radial outflows in the warm gas also allow a reduced circular velocity there. This effect was observed by Swaters, Sancisi and van der Hulst in NGC 891, a particularly turbulent edge-on disk. The models predict that the effect should be universal in such disks. 3) They suggest that a star formation rate like the phenomenological Schmidt Law is the natural result of global thermohydrodynamical balance, and may not obtain in disks far from equilibrium. (Abridged)Comment: 37 pages, 1 gif figure, accepted for publication in the Astrophysical Journa
    corecore