4 research outputs found

    Discovery of RAF265: A Potent mut-B-RAF Inhibitor for the Treatment of Metastatic Melanoma

    No full text
    Abrogation of errant signaling along the MAPK pathway through the inhibition of B-RAF kinase is a validated approach for the treatment of pathway-dependent cancers. We report the development of imidazo-benzimidazoles as potent B-RAF inhibitors. Robust <i>in vivo</i> efficacy coupled with correlating pharmacokinetic/pharmacodynamic (PKPD) and PD-efficacy relationships led to the identification of RAF265, <b>1</b>, which has advanced into clinical trials

    Potent GCN2 Inhibitor Capable of Reversing MDSC-Driven T Cell Suppression Demonstrates In Vivo Efficacy as a Single Agent and in Combination with Anti-Angiogenesis Therapy

    No full text
    General control nonderepressible 2 (GCN2) protein kinase is a cellular stress sensor within the tumor microenvironment (TME), whose signaling cascade has been proposed to contribute to immune escape in tumors. Herein, we report the discovery of cell-potent GCN2 inhibitors with excellent selectivity against its closely related Integrated Stress Response (ISR) family members heme-regulated inhibitor kinase (HRI), protein kinase R (PKR), and (PKR)-like endoplasmic reticulum kinase (PERK), as well as good kinome-wide selectivity and favorable PK. In mice, compound 39 engages GCN2 at levels ≥80% with an oral dose of 15 mg/kg BID. We also demonstrate the ability of compound 39 to alleviate MDSC-related T cell suppression and restore T cell proliferation, similar to the effect seen in MDSCs from GCN2 knockout mice. In the LL2 syngeneic mouse model, compound 39 demonstrates significant tumor growth inhibition (TGI) as a single agent. Furthermore, TGI mediated by anti-VEGFR was enhanced by treatment with compound 39 demonstrating the complementarity of these two mechanisms

    Potent GCN2 Inhibitor Capable of Reversing MDSC-Driven T Cell Suppression Demonstrates In Vivo Efficacy as a Single Agent and in Combination with Anti-Angiogenesis Therapy

    No full text
    General control nonderepressible 2 (GCN2) protein kinase is a cellular stress sensor within the tumor microenvironment (TME), whose signaling cascade has been proposed to contribute to immune escape in tumors. Herein, we report the discovery of cell-potent GCN2 inhibitors with excellent selectivity against its closely related Integrated Stress Response (ISR) family members heme-regulated inhibitor kinase (HRI), protein kinase R (PKR), and (PKR)-like endoplasmic reticulum kinase (PERK), as well as good kinome-wide selectivity and favorable PK. In mice, compound 39 engages GCN2 at levels ≥80% with an oral dose of 15 mg/kg BID. We also demonstrate the ability of compound 39 to alleviate MDSC-related T cell suppression and restore T cell proliferation, similar to the effect seen in MDSCs from GCN2 knockout mice. In the LL2 syngeneic mouse model, compound 39 demonstrates significant tumor growth inhibition (TGI) as a single agent. Furthermore, TGI mediated by anti-VEGFR was enhanced by treatment with compound 39 demonstrating the complementarity of these two mechanisms
    corecore