1,492 research outputs found

    A comprehensive study of infrared OH prompt emission in two comets. I. Observations and effective g-factors

    Get PDF
    We present high-dispersion infrared spectra of hydroxyl (OH) in comets C/2000 WM1 (LINEAR) and C/2004 Q2 (Machholz), acquired with the Near Infrared Echelle Spectrograph at the Keck Observatory atop Mauna Kea, Hawaii. Most of these rovibrational transitions result from photodissociative excitation of H_2O giving rise to OH "prompt" emission. We present calibrated emission efficiencies (equivalent g-factors, measured in OH photons s^(-1) [H_2O molecule]^(-1)) for more than 20 OH lines sampled in these two comets. The OH transitions analyzed cover a broad range of rotational excitation. This infrared database for OH can be used in two principal ways: (1) as an indirect tool for obtaining water production in comets simultaneously with the production of other parent volatiles, even when direct detections of H_2O are not available; and (2) as an observational constraint to models predicting the rotational distribution of rovibrationally excited OH produced by water photolysis

    Correlating the Energetics and Atomic Motions of the Metal-Insulator Transition of M1 Vanadium Dioxide

    Full text link
    Materials that undergo reversible metal-insulator transitions are obvious candidates for new generations of devices. For such potential to be realised, the underlying microscopic mechanisms of such transitions must be fully determined. In this work we probe the correlation between the energy landscape and electronic structure of the metal-insulator transition of vanadium dioxide and the atomic motions occurring using first principles calculations and high resolution X-ray diffraction. Calculations find an energy barrier between the high and low temperature phases corresponding to contraction followed by expansion of the distances between vanadium atoms on neighbouring sub-lattices. X-ray diffraction reveals anisotropic strain broadening in the low temperature structure's crystal planes, however only for those with spacings affected by this compression/expansion. GW calculations reveal that traversing this barrier destabilises the bonding/anti-bonding splitting of the low temperature phase. This precise atomic description of the origin of the energy barrier separating the two structures will facilitate more precise control over the transition characteristics for new applications and devices.Comment: 11 Pages, 8 Figure

    Chiminey: Reliable Computing and Data Management Platform in the Cloud

    Full text link
    The enabling of scientific experiments that are embarrassingly parallel, long running and data-intensive into a cloud-based execution environment is a desirable, though complex undertaking for many researchers. The management of such virtual environments is cumbersome and not necessarily within the core skill set for scientists and engineers. We present here Chiminey, a software platform that enables researchers to (i) run applications on both traditional high-performance computing and cloud-based computing infrastructures, (ii) handle failure during execution, (iii) curate and visualise execution outputs, (iv) share such data with collaborators or the public, and (v) search for publicly available data.Comment: Preprint, ICSE 201

    The protective role of pregnancy in breast cancer

    Get PDF
    Epidemiological, clinical, and experimental data indicate that the risk of developing breast cancer is strongly dependent on the ovary and on endocrine conditions modulated by ovarian function, such as early menarche, late menopause, and parity. Women who gave birth to a child when they were younger than 24 years of age exhibit a decrease in their lifetime risk of developing breast cancer, and additional pregnancies increase the protection. The breast tissue of normally cycling women contains three identifiable types of lobules, the undifferentiated Lobules type 1 (Lob 1) and the more developed Lobules type 2 and Lobules type 3. The breast attains its maximum development during pregnancy and lactation (Lobules type 4). After menopause the breast regresses in both nulliparous and parous women containing only Lob 1. Despite the similarity in the lobular composition of the breast at menopause, the fact that nulliparous women are at higher risk of developing breast cancer than parous women indicates that Lob 1 in these two groups of women might be biologically different, or might exhibit different susceptibility to carcinogenesis. Based on these observations it was postulated that Lob 1 found in the breast of nulliparous women and of parous women with breast cancer never went through the process of differentiation, retaining a high concentration of epithelial cells that are targets for carcinogens and are therefore susceptible to undergo neoplastic transformation. These epithelial cells are called Stem cells 1, whereas Lob 1 structures found in the breast of early parous postmenopausal women free of mammary pathology, on the contrary, are composed of an epithelial cell population that is refractory to transformation, called Stem cells 2. It was further postulated that the degree of differentiation acquired through early pregnancy has changed the 'genomic signature' that differentiates Lob 1 of the early parous women from that of the nulliparous women by shifting the Stem cells 1 to Stem cells 2 that are refractory to carcinogenesis, making this the postulated mechanism of protection conferred by early full-term pregnancy. The identification of a putative breast stem cell (Stem cells 1) has, in the past decade, reached a significant impulse, and several markers also reported for other tissues have been found in the mammary epithelial cells of both rodents and humans. Although further work needs to be carried out in order to better understand the role of the Stem cells 2 and their interaction with the genes that confer them a specific signature, collectively the data presently available provide evidence that pregnancy, through the process of cell differentiation, shifts Stem cells 1 to Stem cells 2 – cells that exhibit a specific genomic signature that could be responsible for the refractoriness of the mammary gland to carcinogenesis

    Classical and Quantum Strings in compactified pp-waves and Godel type Universes

    Full text link
    We consider Neveu-Schwarz pp-waves with spacetime supersymmetry. Upon compactification of a spacelike direction, these backgrounds develop Closed Null Curves (CNCs) and Closed Timelike Curves (CTCs), and are U-dual to supersymmetric Godel type universes. We study classical and quantum strings in this background, with emphasis on the strings winding around the compact direction. We consider two types of strings: long strings stabilized by NS flux and rotating strings which are stabilized against collapse by angular momentum. Some of the latter strings wrap around CNCs and CTCs, and are thus a potential source of pathology. We analyze the partition function, and in particular discuss the effects of these string states. Although our results are not conclusive, the partition function seems to be dramatically altered due to the presence of CNCs and CTCs. We discuss some interpretations of our results, including a possible sign of unitary violation.Comment: 42 pages, LaTeX, 2 figure

    A study of size-dependent properties of MoS2 monolayer nanoflakes using density-functional theory

    Get PDF
    Novel physical phenomena emerge in ultra-small sized nanomaterials. We study the limiting small-size-dependent properties of MoS2 monolayer rhombic nanoflakes using density-functional theory on structures of size up to Mo35S70 (1.74 nm). We investigate the structural and electronic properties as functions of the lateral size of the nanoflakes, finding zigzag is the most stable edge configuration, and that increasing size is accompanied by greater stability. We also investigate passivation of the structures to explore realistic settings, finding increased HOMO-LUMO gaps and energetic stability. Understanding the size-dependent properties will inform efforts to engineer electronic structures at the nano-scale
    • …
    corecore