4,717 research outputs found
Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit
Subspace clustering methods based on , or nuclear norm
regularization have become very popular due to their simplicity, theoretical
guarantees and empirical success. However, the choice of the regularizer can
greatly impact both theory and practice. For instance, regularization
is guaranteed to give a subspace-preserving affinity (i.e., there are no
connections between points from different subspaces) under broad conditions
(e.g., arbitrary subspaces and corrupted data). However, it requires solving a
large scale convex optimization problem. On the other hand, and
nuclear norm regularization provide efficient closed form solutions, but
require very strong assumptions to guarantee a subspace-preserving affinity,
e.g., independent subspaces and uncorrupted data. In this paper we study a
subspace clustering method based on orthogonal matching pursuit. We show that
the method is both computationally efficient and guaranteed to give a
subspace-preserving affinity under broad conditions. Experiments on synthetic
data verify our theoretical analysis, and applications in handwritten digit and
face clustering show that our approach achieves the best trade off between
accuracy and efficiency.Comment: 13 pages, 1 figure, 2 tables. Accepted to CVPR 2016 as an oral
presentatio
A second derivative SQP method: theoretical issues
Sequential quadratic programming (SQP) methods form a class of highly efficient algorithms for solving nonlinearly constrained optimization problems. Although second derivative information may often be calculated, there is little practical theory that justifies exact-Hessian SQP methods. In particular, the resulting quadratic programming (QP) subproblems are often nonconvex, and thus finding their global solutions may be computationally nonviable. This paper presents a second-derivative SQP method based on quadratic subproblems that are either convex, and thus may be solved efficiently, or need not be solved globally. Additionally, an explicit descent-constraint is imposed on certain QP subproblems, which “guides” the iterates through areas in which nonconvexity is a concern. Global convergence of the resulting algorithm is established
Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering
State-of-the-art subspace clustering methods are based on expressing each
data point as a linear combination of other data points while regularizing the
matrix of coefficients with , or nuclear norms.
regularization is guaranteed to give a subspace-preserving affinity (i.e.,
there are no connections between points from different subspaces) under broad
theoretical conditions, but the clusters may not be connected. and
nuclear norm regularization often improve connectivity, but give a
subspace-preserving affinity only for independent subspaces. Mixed ,
and nuclear norm regularizations offer a balance between the
subspace-preserving and connectedness properties, but this comes at the cost of
increased computational complexity. This paper studies the geometry of the
elastic net regularizer (a mixture of the and norms) and uses
it to derive a provably correct and scalable active set method for finding the
optimal coefficients. Our geometric analysis also provides a theoretical
justification and a geometric interpretation for the balance between the
connectedness (due to regularization) and subspace-preserving (due to
regularization) properties for elastic net subspace clustering. Our
experiments show that the proposed active set method not only achieves
state-of-the-art clustering performance, but also efficiently handles
large-scale datasets.Comment: 15 pages, 6 figures, accepted to CVPR 2016 for oral presentatio
- …
