research

Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering

Abstract

State-of-the-art subspace clustering methods are based on expressing each data point as a linear combination of other data points while regularizing the matrix of coefficients with 1\ell_1, 2\ell_2 or nuclear norms. 1\ell_1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad theoretical conditions, but the clusters may not be connected. 2\ell_2 and nuclear norm regularization often improve connectivity, but give a subspace-preserving affinity only for independent subspaces. Mixed 1\ell_1, 2\ell_2 and nuclear norm regularizations offer a balance between the subspace-preserving and connectedness properties, but this comes at the cost of increased computational complexity. This paper studies the geometry of the elastic net regularizer (a mixture of the 1\ell_1 and 2\ell_2 norms) and uses it to derive a provably correct and scalable active set method for finding the optimal coefficients. Our geometric analysis also provides a theoretical justification and a geometric interpretation for the balance between the connectedness (due to 2\ell_2 regularization) and subspace-preserving (due to 1\ell_1 regularization) properties for elastic net subspace clustering. Our experiments show that the proposed active set method not only achieves state-of-the-art clustering performance, but also efficiently handles large-scale datasets.Comment: 15 pages, 6 figures, accepted to CVPR 2016 for oral presentatio

    Similar works

    Full text

    thumbnail-image

    Available Versions