13 research outputs found

    Energetics of hydrogen impurities in aluminum and their effect on mechanical properties

    Full text link
    The effects of hydrogen impurities in the bulk and on the surface of aluminum are theoretically investigated. Within the framework of density functional theory, we have obtained the dependence on H concentration of the stacking fault energy, the cleavage energy, the Al/H surface energy and the Al/H/Al interface formation energy. The results indicate a strong dependence of the slip energy barrier in the [2ˉ11][\bar 211] direction the cleavage energy in the [111] direction and the Al/H/Al interface formation energy, on H concentration and on tension. The dependence of the Al/H surface energy on H coverage is less pronounced, while the optimal H coverage is ≤0.25\leq 0.25 monolayer. The calculated activation energy for diffusion between high symmetry sites in the bulk and on the surface is practically the same, 0.167 eV. From these results, we draw conclusions about the possible effect of H impurities on mechanical properties, and in particular on their role in embrittlement of Al.Comment: 9 pages, 5 figure

    Density-matrix functional theory and the high-density electron gas

    No full text
    This volume contains the proceedings of the Second International Workshop on Electron Correlations and Materials Properties. The aim of this series of workshops is to provide a periodic (triennial) and in-depth assessment of advances in the study and understanding of the effects that electron-electron interactions in solids have on the determination of measurable properties of materials. The workshop is structured to include exposure to experimental work, to phenomenology, and to ab initio theory. Since correlation effects are pervasive the workshop aims to concentrate on the identification of promising developing methodology, experimental and theoretical, addressing the most critical frontier issues of electron correlations on the properties of materials. This series of workshops is distinguished from other topical meetings and conferences in that it strongly promotes an interdisciplinary approach to the study of correlations, involving the fields of quantum chemistry, physics, and materials science

    Muon Catalyzed Fusion: Interplay Between Nuclear and Atomic Physics

    No full text
    corecore