49 research outputs found

    Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency

    Get PDF
    The transcription factors OCT4 and SOX2 are required for generating induced pluripotent stem cells (iPSCs) and for maintaining embryonic stem cells (ESCs). OCT4 and SOX2 associate and bind to DNA in different configurations depending on the arrangement of their individual DNA binding elements. Here we have investigated the role of the different OCT4-SOX2-DNA assemblies in regulating and inducing pluripotency. To this end, we have generated SOX2 mutants that interfere with specific OCT4-SOX2 heterodimer configurations and assessed their ability to generate iPSCs and to rescue ESC self-renewal. Our results demonstrate that the OCT4-SOX2 configuration that dimerizes on a Hoxb1-like composite, a canonical element with juxtaposed individual binding sites, plays a more critical role in the induction and maintenance of pluripotency than any other OCT4-SOX2 configuration. Overall, the results of this study provide new insight into the protein interactions required to establish a de novo pluripotent network and to maintain a true pluripotent cell fate.Link_to_subscribed_fulltex

    State Transitions and the Continuum Limit for a 2D Interacting, Self-Propelled Particle System

    Full text link
    We study a class of swarming problems wherein particles evolve dynamically via pairwise interaction potentials and a velocity selection mechanism. We find that the swarming system undergoes various changes of state as a function of the self-propulsion and interaction potential parameters. In this paper, we utilize a procedure which, in a definitive way, connects a class of individual-based models to their continuum formulations and determine criteria for the validity of the latter. H-stability of the interaction potential plays a fundamental role in determining both the validity of the continuum approximation and the nature of the aggregation state transitions. We perform a linear stability analysis of the continuum model and compare the results to the simulations of the individual-based one

    Macroepidemiological aspects of porcine reproductive and respiratory syndrome virus detection by major United States veterinary diagnostic laboratories over time, age group, and specimen

    Get PDF
    This project investigates the macroepidemiological aspects of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by veterinary diagnostic laboratories (VDLs) for the period 2007 through 2018. Standardized submission data and PRRSV real-time reverse-transcriptase polymerase chain reaction (RT-qPCR) test results from porcine samples were retrieved from four VDLs representing 95% of all swine samples tested in NAHLN laboratories in the US. Anonymized data were retrieved and organized at the case level using SAS (SAS® Version 9.4, SAS® Institute, Inc., Cary, NC) with the use of PROC DATA, PROC MERGE, and PROC SQL scripts. The final aggregated and anonymized dataset comprised of 547,873 unique cases was uploaded to Power Business Intelligence—Power BI® (Microsoft Corporation, Redmond, Washington) to construct dynamic charts. The number of cases tested for PRRSV doubled from 2010 to 2018, with that increase mainly driven by samples typically used for monitoring purposes rather than diagnosis of disease. Apparent seasonal trends for the frequency of PRRSV detection were consistently observed with a higher percentage of positive cases occurring during fall or winter months and lower during summer months, perhaps due to increased testing associated with well-known seasonal occurrence of swine respiratory disease. PRRSV type 2, also known as North American genotype, accounted for 94.76% of all positive cases and was distributed across the US. PRRSV type 1, also known as European genotype, was geographically restricted and accounted for 2.15% of all positive cases. Co-detection of both strains accounted for 3.09% of the positive cases. Both oral fluid and processing fluid samples, had a rapid increase in the number of submissions soon after they were described in 2008 and 2017, respectively, suggesting rapid adoption of these specimens by the US swine industry for PRRSV monitoring in swine populations. As part of this project, a bio-informatics tool defined as Swine Disease Reporting System (SDRS) was developed. This tool has real-time capability to inform the US swine industry on the macroepidemiological aspects of PRRSV detection, and is easily adaptable for other analytes relevant to the swine industry
    corecore