2,526 research outputs found

    Tetra­kis(acetonitrile-κN)lithium hexa­fluoridophosphate acetonitrile monosolvate

    Get PDF
    In the title compound, [Li(CH3CN)4]PF6·CH3CN, the asymmetric unit consists of three independent tetra­hedral [Li(CH3CN)4]+ cations, three uncoordinated PF6 − anions and three uncoordinated CH3CN solvent mol­ecules. The three anions are disordered over two sites through a rotation along one of the F—P—F axes. The relative occupancies of the two sites for the F atoms are 0.643 (16):0.357 (16), 0.677 (10):0.323 (10) and 0.723 (13):0.277 (13). The crystal used was a racemic twin, with approximately equal twin components

    Lithium Salt Effects on Silicon Electrode Performance and Solid Electrolyte Interphase (SEI) Structure, Role of Solution Structure on SEI Formation

    Get PDF
    Silicon electrodes were cycled with electrolytes containing different salts to investigate the effect of salt on the electrochemical performance and SEI structure. Comparable capacity retention were observed for the 1.2 M LiPF6, LiTFSI and LiClO4 electrolytes in ethylene carbonate (EC):dimethyl carbonate (DEC), 1:1, but severe fading was observed for the 1.2 M LiBF4 electrolyte. The differential capacity plots and EIS analysis reveals that failure of the 1.2 M LiBF4 electrolyte is attributed to large surface resistance and increasing polarization upon cycling. However, when LiBF4 was added as an electrolyte additive (10% LiBF4 and 90% LiPF6), the capacity retention and Coulombic efficiency were improved. The SEI was analyzed by FTIR and XPS for each electrolyte. Both spectroscopic methods suggest that the main components of the SEI are lithium ethylene dicarbonate (LEDC) and Li2CO3 in the 1.2 M LiPF6, LiTFSI and LiClO4 electrolytes, while an inorganic-rich SEI, composed of LiF and borates, was generated for both the 1.2 M LiBF4 electrolyte and the 10% LiBF4 electrolyte. The chemical composition of the SEIs and corresponding electrochemical performance of the Si electrodes were strongly correlated with electrolyte solution structure

    Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries

    Get PDF
    A thorough analysis of the evolution of the voltage profiles of silicon nanoparticle electrodes upon cycling has been conducted. The largest changes to the voltage profiles occur at the earlier stages (\u3e 0.16 V vs Li/Li+) of lithiation of the silicon nanoparticles. The changes in the voltage profiles suggest that the predominant failure mechanism of the silicon electrode is related to incomplete delithiation of the silicon electrode during cycling. The incomplete delithiation is attributed to resistance increases during delithiation, which are predominantly contact and solid electrolyte interface (SEI) resistance. The capacity retention can be significantly improved by lowering delithiation cutoff voltage or by introducing electrolyte additives, which generate a superior SEI. The improved capacity retention is attributed to the reduction of the contact and SEI resistance

    Bisphosphonates and risk of atrial fibrillation: a meta-analysis

    Get PDF
    Abstract Introduction Bisphosphonates are the most commonly used drugs for the prevention and treatment of osteoporosis. Although a recent FDA review of the results of clinical trials reported no clear link between bisphosphonates and serious or non-serious atrial fibrillation (AF), some epidemiologic studies have suggested an association between AF and bisphosphonates. Methods We conducted a meta-analysis of non-experimental studies to evaluate the risk of AF associated with bisphosphonates. Studies were identified by searching MEDLINE and EMBASE using a combination of the Medical Subject Headings and keywords. Our search was limited to English language articles. The pooled estimates of odds ratios (OR) as a measure of effect size were calculated using a random effects model. Results Seven eligible studies with 266,761 patients were identified: three cohort, three case-control, and one self-controlled case series. Bisphosphonate exposure was not associated with an increased risk of AF [pooled multivariate OR 1.04, 95% confidence interval (CI) 0.92-1.16] after adjusting for known risk factors. Moderate heterogeneity was noted (I-squared score = 62.8%). Stratified analyses by study design, cohort versus case-control studies, yielded similar results. Egger's and Begg's tests did not suggest an evidence of publication bias (P = 0.90, 1.00 respectively). No clear asymmetry was observed in the funnel plot analysis. Few studies compared risk between bisphosphonates or by dosing. Conclusions Our study did not find an association between bisphosphonate exposure and AF. This finding is consistent with the FDA's statement

    Thiazolidinediones Regulate Adipose Lineage Dynamics

    Get PDF
    SummaryWhite adipose tissue regulates metabolism; the importance of this control is highlighted by the ongoing pandemic of obesity and associated complications such as diabetes, atherosclerosis, and cancer. White adipose tissue maintenance is a dynamic process, yet very little is known about how pharmacologic stimuli affect such plasticity. Combining in vivo lineage marking and BrdU labeling strategies, we found that rosiglitazone, a member of the thiazolidinedione class of glucose-lowering medicines, markedly increases the evolution of adipose progenitors into adipocytes. Notably, chronic rosiglitazone administration disrupts the adipogenic and self-renewal capacities of the stem cell compartment and alters its molecular characteristics. These data unravel unknown aspects of adipose dynamics and provide a basis to manipulate the adipose lineage for therapeutic ends

    Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys

    Full text link
    We show that the measurement of the baryonic acoustic oscillations in large high redshift galaxy surveys offers a precision route to the measurement of dark energy. The cosmic microwave background provides the scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to z=3 and report errors on cosmography while marginalizing over a large number of cosmological parameters including a time-dependent equation of state. With redshifts surveys combined with cosmic microwave background satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and 0.28 on dw(z)/dz for cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss the dependence of performance on redshift, survey conditions, and fiducial model. We find results that are competitive with the performance of future supernovae Ia surveys. We conclude that redshift surveys offer a promising independent route to the measurement of dark energy.Comment: submitted to ApJ, 24 pages, LaTe

    Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak

    Full text link
    The baryon acoustic oscillations are a promising route to the precision measure of the cosmological distance scale and hence the measurement of the time evolution of dark energy. We show that the non-linear degradation of the acoustic signature in the correlations of low-redshift galaxies is a correctable process. By suitable reconstruction of the linear density field, one can sharpen the acoustic peak in the correlation function or, equivalently, restore the higher harmonics of the oscillations in the power spectrum. With this, one can achieve better measurements of the acoustic scale for a given survey volume. Reconstruction is particularly effective at low redshift, where the non-linearities are worse but where the dark energy density is highest. At z=0.3, we find that one can reduce the sample variance error bar on the acoustic scale by at least a factor of 2 and in principle by nearly a factor of 4. We discuss the significant implications our results have for the design of galaxy surveys aimed at measuring the distance scale through the acoustic peak.Comment: 5 pages, LaTeX. Submitted to the Astrophysical Journa

    Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery

    Get PDF
    Tin (Sn) nanoparticle electrodes have been prepared and battery cycling performance has been investigated with 1.2 M LiPF6 in ethylene carbonate (EC) / diethyl carbonate (DEC) electrolyte (1:1, w/w) with and without added vinylene carbonate (VC) or fluoroethylene carbonate (FEC). Incorporation of either VC or FEC improves the capacity retention of Sn nanoparticle electrodes although incorporation of VC also results in a significant increase in cell impedance. The best electrochemical performance was observed with electrolyte containing 10% of added FEC. In order to develop a better understanding of the role of the electrolyte in capacity retention and solid electrolyte interface (SEI) structure, ex-situ surface analysis has been performed on cycled electrodes with infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and Hard XPS (HAXPES). The ex-situ analysis reveals a correlation between electrochemical performance, electrolyte composition, and SEI structure
    corecore