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Capacity Fading Mechanisms of Silicon Nanoparticle Negative
Electrodes for Lithium Ion Batteries
Taeho Yoon, Cao Cuong Nguyen,∗ Daniel M. Seo, and Brett L. Lucht∗,z

Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, USA

A thorough analysis of the evolution of the voltage profiles of silicon nanoparticle electrodes upon cycling has been conducted.
The largest changes to the voltage profiles occur at the earlier stages (> 0.16 V vs Li/Li+) of lithiation of the silicon nanoparticles.
The changes in the voltage profiles suggest that the predominant failure mechanism of the silicon electrode is related to incomplete
delithiation of the silicon electrode during cycling. The incomplete delithiation is attributed to resistance increases during delithiation,
which are predominantly contact and solid electrolyte interface (SEI) resistance. The capacity retention can be significantly improved
by lowering delithiation cutoff voltage or by introducing electrolyte additives, which generate a superior SEI. The improved capacity
retention is attributed to the reduction of the contact and SEI resistance.
© The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons
Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any
medium, provided the original work is properly cited. [DOI: 10.1149/2.0731512jes] All rights reserved.
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is a version of Paper 367 from the Phoenix, Arizona, Meeting of the Society, October 11–15, 2015.

Due to increasing demands for lithium ion batteries with higher en-
ergy density, several electrode materials capable of improving lithium
ion capacity have been investigated. Among them, silicon has been
steadily highlighted as one of the most promising materials for nega-
tive electrodes due to excellent electrochemical properties; large the-
oretical specific capacity and low working potential.1 While these
properties make silicon an interesting electrode material with promise
to bring innovation to energy storage devices, other electrochemi-
cal behavior such as cycling performance, coulombic efficiency, and
capacity retention are insufficient for commercial batteries.2

In the context of improving the cycling behavior of silicon elec-
trodes, the mechanism of capacity fade has been investigated ex-
tensively. Most reported failure mechanisms are based on problems
associated with the large volume change which the silicon particle
experiences during lithiation and delithiation. The repeated volume
expansion/contraction results in cracking or pulverization of the sili-
con particles during prolonged cycling.1,3–5 Furthermore, it has been
reported that volume contraction of silicon particles upon delithia-
tion is accompanied by loss of electric conductivity of the electrode
layer since the contracted silicon particles are poorly connected with
surrounding conductive carbon additives and current collector.6,7 The
failure of the SEI (solid electrolyte interphase) on the silicon electrode,
is another key factor for electrochemical reversibility of lithium ion
batteries. The SEI layer does not have mechanical tolerance to endure
the large volumetric changes during expansion/contraction of the sili-
con surface.8–14 As a result, the electrolyte decomposes continuously
to cover newly exposed surface and increase the thickness of the SEI.
In addition to the problems due to the large volume changes, low con-
ductivity of silicon and structural stress owing to phase transformation
have also been reported to contribute to capacity fading.15,16

The widespread approach to overcome the aforementioned failures
of volume change is to employ nano-structured silicon particles as ac-
tive material.17,18 It has been reported that the mechanical stress of
volume change is considerably reduced in nano-structured silicon.19

In addition, nano-structured silicon electrodes mitigate the tension that
polymeric binders are subjected to during lithiation/delithiation pre-
serving the contact between silicon particles and carbon additives.7 In
particular, binders containing hydroxyl substituents on the backbone,
such as polyarcrylic acid (PAA) and carboxymethyl cellulose (CMC),
have been reported to have chemical bonding between binder and sili-
con, ensuring stronger adhesion.20–23 Efforts to stabilize the large sur-
face area of nano-structured silicon electrodes have utilized electrolyte
additives such as fluoroethylene carbonate (FEC) and vinylene car-
bonate (VC) which lead to the generation of a more effective SEI.24–30
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Even though the electrochemical performance of silicon electrodes
can be significantly enhanced by the combination of nano-structured
silicon, effective binders, and SEI forming electrolyte additives; the
capacity retention and efficiency of the silicon electrodes remain in-
sufficient for commercial application. In addition, the systematic elec-
trochemical analysis of the crucial factors dictating capacity retention
of nano-structured silicon electrodes has been limited.19,31–36

The prime focus of this work is to elucidate the dominant mech-
anisms of capacity fade of nano-structured silicon electrodes. To this
end, different sizes of nano-structured silicon particles were inves-
tigated and the electrochemical properties, such as voltage profile
and differential capacity, have been carefully analyzed. Furthermore,
from the comparative study with different electrolyte solutions, the
deformation of the SEI layer during delithiation and its detrimental
effect to cycle performance have been inferred. Based on these find-
ings, methods to improve cycleability of silicon electrodes have been
suggested.

Experimental

The 0.7 μm sized-silicon particles prepared by milling (Wacker
Chemie AG) were primarily utilized for electrochemical analysis.
Additional smaller silicon particles, 0.05 μm (Alfa Aesar) and 0.2 μm
(Umicore), were also used for comparison. The silicon electrodes
were composed of active material, conductive carbon (super C), and
polymeric binder in a weight ratio of 50:25:25. A 1:1 mixture of PAA
and CMC (weight ratio) was used for the binder. Electrodes were
prepared from a slurry in which the three components were mixed in
distilled water and stirred for 3 hours to ensure homogeneity. The as
prepared slurry was coated on copper foil and dried in a vacuum oven
at ambient temperature overnight. Electrodes were punched with a
diameter of 14 mm (1.54 cm2) followed by vacuum-drying at 110◦C
for 6 hours. The loading mass of the electrodes were 0.9 mg of Si
per cm2.

Coin cells (2032-type cell) were assembled with a silicon electrode
as the working electrode, lithium foil as a counter electrode, two sep-
arators (a polypropylene and a glass fiber), and 100 μL of electrolyte.
The electrolyte was a solution of 1 M LiPF6 (lithium hexafluorophos-
phate) and carbonate-based solvent (ethylene carbonate (EC):diethyl
carbonate (DEC) = 1:1). The FEC was used as an electrolyte additive
to the standard electrolyte solution. Cells were produced in triplicate
with similar results. Representative data is presented.

Galvanostatic lithiation (charge) and delithiation (discharge) were
carried out at a constant current of 0.05 C for the 1st cycle and 0.3 C for
the subsequent cycles. The cutoff potentials for lithiation/delithiation
were 0.005 V and 1.5 V, respectively, and the potential, at the end
of lithiation, was held at 0.005 V until the current decreases to
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Figure 1. Cycle performance of 0.7 μm silicon electrode at 25◦C (a), and the
galvanostatic lithiation and delithiation voltage profiles (b). The voltage cutoff
was 1.5–0.005 V (vs. Li/Li+).

0.05 C. All electrochemical tests were carried out with an Arbin
BT2000 battery cycler at 25◦C. To obtain FE-SEM (field emission
scanning electron microscopic) images of electrode morphology, sil-
icon electrodes were collected after specific charging/discharging cy-
cles and rinsed with dimethyl carbonate (DMC), and then transferred
to the SEM chamber (Zeiss SIGMA VP). All electrodes for SEM
measurement were delithiated to 0.7 V on the last cycle.

Results and Discussion

The cycling behavior of a silicon electrode is presented in
Figure 1a showing moderate reversible capacity, ca. 3500 mAh g−1

(based on the weight of silicon), during the initial five cycles. In ad-
dition, the first cycle efficiency (91.2%) is very good compared to
many nano-structured silicon electrodes,32,33,36,37 due to the optimized
electrode, binder and conductive carbon, formulation.29 Considering
that the theoretical specific capacity of silicon is 3579 mAh g−1 if
the silicon is assumed to uptake 3.75 equivalents of lithium ions and
electrons per a mole of silicon, the obtained delithiation capacity is
very close to the theoretical capacity. Interestingly, the delithiation
capacities for cycles 2–4 are very similar to the first cycle despite the
significant increase in rate.38 This is likely, due to the high concen-
tration of conductive carbon in the electrode. While the initial five
cycles have relatively stable cycling, upon an additional 30 cycles
the reversible capacity continuously decreases to 50% of the initial
capacity. Mechanisms for changes in capacity can be determined via
interpretation of the evolution of voltage profiles, since the deviations
of reaction potentials reflect the thermodynamic or kinetic events oc-
curring in electrochemical reactions. An interesting trend in lithiation
curves is observed in Figure 1b. The lithiation curve for the 2nd lithia-
tion cycle is comprised of a long plateau at 0.25 V and a short plateau
at 0.09 V. As the cycling is increased from the 2nd to the 30th cycle the
first plateau (0.25 V) becomes shorter while the later plateau (0.09 V)

Figure 2. Differential capacity plot of Li/Si cell. Note that the lithiation peak
at 0.25 V is disappearing with cycling.

remains nearly constant. By the 30th cycle the plateau at 0.09 V is
longer than the plateau at 0.25 V.

Capacity loss in the early stage of lithiation, represented by the
decreasing plateau at 0.25 V in Figure 1b, is unusual. In typical
negative electrodes, such as graphite, the lithiation and delithiation
curves are shifted downward and upward, respectively, upon addi-
tional cycling.39,40 The changes in the lithiation and delithiation curves
result from increases in the polarization of the cell which leads to the
measured potential of the cells reaching the cutoff potential prior to
that of the thermodynamic state of the electrode. The lost capacity in
the later stage of lithiation is due to the polarization increase which
results from charge transfer or SEI resistance and has been described
as a mechanism for capacity fade.41,42 However, for the silicon elec-
trode, the primary changes to the lithiation/delithiation curves are
observed in the earlier charging region, the plateau at 0.25 V, whereas
changes due to polarization are much less significant. In addition, the
potentials of the plateaus upon both lithiation and delithiation do not
significantly change upon cycling.

The capacity fading and polarization behavior are more clearly
depicted in the differential capacity plot in Figure 2. The dQ/dV
plots contain three peaks in the lithiation curves and two peaks in
delithiation curves. The lithiation, peaks centered at 0.25 and 0.09 V
correspond to the plateaus at 0.25 and 0.09 V in Figure 1b, respectively.
The peak at the end of lithiation, 0.005 V, has been ascribed to a
phase transformation from amorphous to crystalline, which occurs
when the stoichiometry reaches Li3.75Si (Li15Si4).29 The delithiation,
peak at 0.3 V corresponds to delithiation of the amorphous phase
and the intensity decreases as the silicon particles are converted to
the crystalline phase, while the peak at 0.45 V, which corresponds to
delithiation of crystalline phase, becomes larger and sharper.16 The
relative intensities of these two peaks are primarily dependent on the
ratio of the amorphous and crystalline phase at the end of lithiation.

In Figure 2, the lithiation peaks are gradually shifted to the left
characteristic of increased polarization upon cycling. The shifting of
the peak causes the cells to obtain the cutoff potential earlier leading
to incomplete lithiation of the silicon anode. Therefore, polarization
contributes to the decrease of the delithiation capacity. However, the
contribution of the increase in polarization to the decrease in delithia-
tion capacity is limited since the lithiation peaks at 0.09 and 0.005 V
are only slightly shifted. The primary source of the capacity loss is due
to decreases in the intensity of the peak at 0.25 V during lithiation.
The high potential shoulder at 0.3 V completely disappears by the
15th cycle while the remaining peak at 0.25 V continues to decrease
considerably with prolonged cycling.

To monitor the evolution of the lithiation peaks quantitatively in
the differential capacity plot, and estimate their contributions to total
capacity fade, the lithiation profile was divided into four regions. The
voltage range of each region and their final stoichiometry are pre-
sented in Figure 3a. The regions are assigned as R1, R2, R3, and R4
and the corresponding potential ranges are 0.8–0.27 V, 0.27–0.16 V,
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Figure 3. Lithiation curve of 0.7 μm silicon electrode was divided into four
regions as R1, R2, R3, and R4 (a), and the specific capacity of each region
was plotted versus cycle number (b). Dotted lines are delithiation profile of
the electrode which was lithiated to corresponding stoichiometry. The voltage
range and the stoichiometry of each region were indicated in inset table.

0.16–0.03 V, and 0.03–0.005 V, respectively. The regions were divided
based on shape of the lithiation curve without considering the struc-
tural/physical meaning of the each region. Note that the peak at 0.25
V was divided into two peaks based on asymmetry and the presence
of a shoulder at 0.3 V and R4 includes the constant voltage step at
end of charging. The dotted lines in Figure 3a are delithiation profiles
obtained when the electrodes were only lithiated to the corresponding
stoichiometry for each region. Since the intensities of the delithiation
peaks and the broad shoulder above 0.55 V are dependent upon the
ratio of amorphous to crystalline phases and have significant overlap
(Fig. 3a), the delithiation peaks were not further analyzed.

The change in capacity for each region as a function of cycle num-
ber is plotted in Figure 3b. The plot of R total reveals reasonable
capacity retention during the initial five cycles, but the capacity de-
creases significantly after the 5th cycle in agreement with the capacity
retention data presented in Figure 1a. Interestingly, from the 5th to
10th cycle, the decrease in capacity of R1 coincides with the decrease
in capacity of R total, suggesting that capacity loss for R1 is the main
contributor to capacity loss of R total for cycles 5–10. After the ca-
pacity of R1 is reduced to zero, R2 begins to decrease significantly
through the 30th cycle. Thus during cycles 10–30, the capacity de-
crease of R2 is the primary contributor to the total capacity (R total)
decrease. The changes to R3 and the R4 are minor over all 30 cycles.
This suggests that the decreases in capacity of R1 and R2 are the main
contributors to the total capacity fade of the silicon electrode and that
the fade occurs consecutively.

Silicon electrodes have also been prepared with 0.05 μm and
0.2 μm silicon particles. The cells have been cycled and the dif-
ferent regions of the lithiation cycles have been analyzed in the same
manner as the cells containing the 0.7 μm Si electrodes, as depicted in
Figure 4. Despite the large differences in particle size and surface mor-
phology all of the cells have consistent capacity fading behavior. The

Figure 4. Cycle performances of different sized-silicon electrodes (a) and
specific capacity variation of R1–R4 components with respect to the cycle
number obtained from 0.05 μm (b) and 200 μm (c) sized silicon electrode
were presented. Note that R1 and R2 fade successively and they dominate the
total capacity in both electrodes.

decrease in R1 is observed first followed by the decrease in R2 and
the majority of the capacity fade occurs from these two regions.

In order to further the development of silicon anodes for lithium
ion batteries a better understanding of the capacity fade in regions
R1 and R2 must be developed and an effective method to inhibit the
capacity fade must be devised. Regions R1 and R2 correspond to the
early stages of lithiation of the silicon anode up to the stoichiome-
try of ∼Li2Si. The data suggests that these early stages of lithiation
are skipped upon extended cycling leading to direct lithiation of re-
gions R3 and R4. This suggests that the lithiation reaction on the 10th

and subsequent cycles occur with partially lithiated silicon, ∼Li2Si,
instead of pure silicon. The silicon electrode is not fully delithiated
during the previous delithiation. The broad shoulder at 0.55 V in the
delithiation curve, which corresponds to the delithiation reaction for
R1 (Figure 3a), significantly decreases during cycling, supporting the
lack of delithiation. Thus, decreases in R1 and R2 upon extended
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Figure 5. Cycle performances of 0.7 μm silicon electrode in different elec-
trolytes (a) and capacity variations of R1–R4 components of Li/Si cell cycled
in FEC-added electrolyte.

cycling are likely due to incomplete delithiation during the previous
cycle.

The lack of delithiation form the intermediate lithiated phase of
silicon, is likely due to a combination of two factors. First, increases
in cell impedance upon delithiation can result from a contraction of
the silicon particles. As the silicon particles decrease in size, the elec-
trode has poor electrical contact resulting in higher contact resistance
as the particles become electrically isolated. Secondly, as the cycling
increases the cumulative cell inefficiency is increased. This cumula-
tive cell inefficiency largely corresponds to increases in electrolyte
decomposition and subsequent increases in the SEI thickness. The
increases in the SEI thickness result in increases in SEI resistance
since the SEI is a good ion conductor but poor electrical conductor.
In addition, particle pulverization has also been frequently reported
to contribute to capacity fade in silicon electrodes.4,35 However, in
this study there are only small differences in the capacity fade as a
function of particle size when comparing 0.7, 0.2, and 0.05 μm sil-
icon, as depicted in Fig. 4. The slight increase in capacity fade of
the 0.7 μm particles is consistent with increased pulverization of the
larger particles, but suggests that pulverization is minimized.

Further support for capacity loss in R1 occurring as a result of
SEI resistance is depicted in Figure 5. The capacity retention of the
silicon electrode is improved upon incorporation of the anode SEI sta-
bilizing additive FEC. The FEC has been reported to generate a more
stable SEI on the surface of the silicon electrode which suppresses
further electrolyte decomposition.24–26 Since expansion of the silicon
electrode during lithiation results in a large change in surface area,
electrolyte decomposition continues to occur on the newly exposed
surface of silicon and the coulombic efficiency is poor. However,
the FEC derived SEI layers have better passivation ability and lower
resistance resulting in an improved coulombic efficiency (Figure 5,
inset).13,26,29 The improved capacity retention results primarily from
a delay in the decrease in R1 (Figure 5b), implying that the SEI has

Figure 6. Schematic diagram illustrating the failure in delithiation period.

a role in the incomplete delithiation of the silicon anode. That is,
the SEI layer formed in additive-free electrolyte hinders the delithia-
tion reaction of the silicon electrode, especially at the latter region of
delithiation, whereas the SEI modified by an electrolyte additive hin-
ders the delithiation less, hence the retention of R1 is improved. Thus
the resistance of the SEI layer is a critical factor impacting delithiation
and cycleability. The SEI and contact resistances in delithiation period
are described schematically in Figure 6.

The failure of silicon electrodes resulting from contact loss dur-
ing delithiation can be supported by comparing the cycling behavior
of cells with modified cutoff potentials. The normalized capacity re-
tention of the electrodes cycled with three different potential ranges
are depicted in Figure 7. The baseline electrode cycled between 1.5–
0.005 V retains only 49% of the capacity on the 30th cycle. However,
when the delithiation cutoff potential was changed from 1.5 to 0.7 V
after the 3rd cycle, the capacity retention of the electrode is signif-
icantly improved (69%, from 3rd to 30th cycle) due to mitigation
of the volume expansion/contraction. The modified potential range
results in a slight decrease in the quantity of cycled capacity (10%,
350 mAh g−1). The capacity retention can be further improved (86%,
from 3rd to 30th cycle) upon incorporation of the SEI stabilizing addi-
tive FEC (Fig. 5b). In contrast cells cycled between 1.5–0.05 V, which
delivered the same capacity to the electrodes cycled in 0.7–0.005 V
(3250 mAh g−1) on the 3rd cycle, have a similar capacity fading be-
havior to the electrode cycled between 1.5–0.005 V. This is surprising
since the phase transformation from amorphous to crystalline which
occurs below 0.05 V has been reported to be one of the major failure
mechanisms of silicon electrodes.16,43,44 On the contrary, the results
presented in Figure 7 suggest that the degradation of electric con-
tact during delithiation dominates the electrochemical performance
of silicon electrodes.

Figure 7. Capacity retentions obtained from Li/Si cells cycled in various cut-
off potentials. The cutoff potentials were switched from 3rd cycle.
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Figure 8. FE-SEM images obtained from fresh electrode (a), after 5 cycles
(b) and (c), and after 15 cycles (d) and (e). The electrodes of (b) and (d)
were lithiated/delithiated in potential range of 1.5–0.005 V with additive-free
electrolyte while the (c) and (e) were cycled in 0.7–0.005 V with FEC-added
electrolyte. All cycled electrode was collected after discharging up to 0.7 V in
the last cycle.

The evolution of electrode morphology upon cycling has been
monitored by SEM and compared in Figure 8. An image of a fresh
electrode composed of silicon particles (light gray) and carbon addi-
tive (dark gray) is provided in Figure 8a. The silicon powders have
been prepared through a milling process resulting in particles with
sharp edges and flat facets. The SEM image of the electrode extracted
after 5 cycles in potential range of 1.5–0.005 V with the baseline
electrolyte is provided in Figure 8b. While the electrode integrity is
still maintained, the sharp edges disappear due to the formation of
an SEI. Alternatively, SEM images after 15 cycles reveal prominent
dark valleys between the silicon and carbon particles on the surface
(Fig. 8d), implying that the damage of repeated volume change ac-
cumulates and leads to particle isolation and related contact resis-
tance. The SEM images of the electrode extracted after 5 cycles in
the potential range of 0.7–0.005 V with electrolyte containing FEC
(Fig. 8c) are very similar to electrodes cycled with the baseline elec-
trolyte between 1.5–0.005 V. However, in contrast the electrodes cy-
cled between 0.7–0.005 V with the electrolyte containing FEC retain
integrity after 15 cycles showing little evidence of particle isolation
(Fig. 8e). The morphological changes of the silicon electrodes corre-
late with the electrochemical data shown in Figure 7 and the failure
mechanisms depicted in Figure 6.

Conclusions

The dominant failure mechanism of silicon nanoparticle negative
electrodes has been investigated via interpretation of the electrochem-
ical cycling data, voltage profiles and differential capacity plots. The
majority of capacity loss occurs during the early stages of lithiation.
By dividing the lithiation period into four regions (R1, R2, R3, and
R4) and monitoring the capacity fade quantitatively during cycling, the
capacity fade during the earlier stages of lithiation, R1 and R2, dom-
inates the total capacity fade. The unusual capacity fading behavior
results from incomplete delithiation during the previous delithiation
cycle. As the silicon particles are delithiated the particle size is de-
creased and the electrode resistance, predominantly contact and SEI

resistance, increases and inhibits lithium extraction. When the silicon
electrode is cycled over a narrower potential range or cycled with
electrolyte containing added FEC, the electrode has better capacity
retention. Modification of either the potential range or the electrolyte
formulation diminishes contact loss or SEI resistance during delithi-
ation and improves the electrochemical reversibility of the silicon
electrode.
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