3 research outputs found

    Acyl Guanidine Inhibitors of β‑Secretase (BACE-1): Optimization of a Micromolar Hit to a Nanomolar Lead via Iterative Solid- and Solution-Phase Library Synthesis

    No full text
    This report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation−π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent. Following subcutaneous administration in rats, an acyl guanidine inhibitor with single-digit nanomolar activity in cells afforded good plasma exposures and a dose-dependent reduction in plasma Aβ levels, but poor brain exposure was observed (likely due to Pgp-mediated efflux), and significant reductions in brain Aβ levels were not obtained

    Discovery of Clinical Candidate 2‑((2<i>S</i>,6<i>S</i>)‑2-Phenyl-6-hydroxyadamantan-2-yl)-1-(3′-hydroxyazetidin-1-yl)ethanone [BMS-816336], an Orally Active Novel Selective 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor

    No full text
    BMS-816336 (<b>6n-2</b>), a hydroxy-substituted adamantyl acetamide, has been identified as a novel, potent inhibitor against human 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme (IC<sub>50</sub> 3.0 nM) with >10000-fold selectivity over human 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). <b>6n-2</b> exhibits a robust acute pharmacodynamic effect in cynomolgus monkeys (ED<sub>50</sub> 0.12 mg/kg) and in DIO mice. It is orally bioavailable (%<i>F</i> ranges from 20 to 72% in preclinical species) and has a predicted pharmacokinetic profile of a high peak to trough ratio and short half-life in humans. This ADME profile met our selection criteria for once daily administration, targeting robust inhibition of 11β-HSD1 enzyme for the first 12 h period after dosing followed by an “inhibition holiday” so that the potential for hypothalamic–pituitary–adrenal (HPA) axis activation might be mitigated. <b>6n-2</b> was found to be well-tolerated in phase 1 clinical studies and represents a potential new treatment for type 2 diabetes, metabolic syndrome, and other human diseases modulated by glucocorticoid control

    Discovery and Preclinical Characterization of the Cyclopropylindolobenzazepine BMS-791325, A Potent Allosteric Inhibitor of the Hepatitis C Virus NS5B Polymerase

    No full text
    Described herein are structure–activity relationship studies that resulted in the optimization of the activity of members of a class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors. Subsequent iterations of analogue design and syntheses successfully addressed off-target activities, most notably human pregnane X receptor (hPXR) transactivation, and led to significant improvements in the physicochemical properties of lead compounds. Those analogues exhibiting improved solubility and membrane permeability were shown to have notably enhanced pharmacokinetic profiles. Additionally, a series of alkyl bridged piperazine carboxamides was identified as being of particular interest, and from which the compound BMS-791325 (<b>2</b>) was found to have distinguishing antiviral, safety, and pharmacokinetic properties that resulted in its selection for clinical evaluation
    corecore