611 research outputs found

    Vortex Dynamics and Hall Conductivity of Hard Core Bosons

    Get PDF
    Magneto-transport of hard core bosons (HCB) is studied using an XXZ quantum spin model representation, appropriately gauged on the torus to allow for an external magnetic field. We find strong lattice effects near half filling. An effective quantum mechanical description of the vortex degrees of freedom is derived. Using semiclassical and numerical analysis we compute the vortex hopping energy, which at half filling is close to magnitude of the boson hopping energy. The critical quantum melting density of the vortex lattice is estimated at 6.5x10-5 vortices per unit cell. The Hall conductance is computed from the Chern numbers of the low energy eigenstates. At zero temperature, it reverses sign abruptly at half filling. At precisely half filling, all eigenstates are doubly degenerate for any odd number of flux quanta. We prove the exact degeneracies on the torus by constructing an SU(2) algebra of point-group symmetries, associated with the center of vorticity. This result is interpreted as if each vortex carries an internal spin-half degree of freedom ('vspin'), which can manifest itself as a charge density modulation in its core. Our findings suggest interesting experimental implications for vortex motion of cold atoms in optical lattices, and magnet-transport of short coherence length superconductors.Comment: 15 pages, 15 figure

    Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species

    Get PDF
    White-nose syndrome is a fungal disease that has decimated bat populations across eastern North America. Identification of the etiologic agent, Pseudogymnoascus destructans (formerly Geomyces destructans), in environmental samples is essential to proposed management plans. A major challenge is the presence of closely related species, which are ubiquitous in many soils and cave sediments and often present in high abundance. We present a dual-probe real-time quantitative PCR assay capable of detecting and differentiating P. destructans from closely related fungi in environmental samples from North America. The assay, based on a single nucleotide polymorphism (SNP) specific to P. destructans, is capable of rapid low-level detection from various sampling media, including sediment, fecal samples, wing biopsy specimens, and skin swabs. This method is a highly sensitive, high-throughput method for identifying P. destructans, other Pseudogymnoascus spp., and Geomyces spp. in the environment, providing a fundamental component of research and risk assessment for addressing this disease, as well as other ecological and mycological work on related fungi

    The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87159/1/j.1365-2958.2011.07804.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/87159/2/MMI_7804_sm_FigS1-4-TabS1.pd

    Coarse woody debris decomposition assessment tool: Model development and sensitivity analysis

    Get PDF
    Coarse woody debris (CWD) is an important component in forests, hosting a variety of organisms that have critical roles in nutrient cycling and carbon (C) storage. We developed a process-based model using literature, field observations, and expert knowledge to assess woody debris decomposition in forests and the movement of wood C into the soil and atmosphere. The sensitivity analysis was conducted against the primary ecological drivers (wood properties and ambient conditions) used as model inputs. The analysis used eighty-nine climate datasets from North America, from tropical (14.2° N) to boreal (65.0° N) zones, with large ranges in annual mean temperature (26.5°C in tropical to -11.8°C in boreal), annual precipitation (6,143 to 181 mm), annual snowfall (0 to 612 kg m-2), and altitude (3 to 2,824 m above mean see level). The sensitivity analysis showed that CWD decomposition was strongly affected by climate, geographical location and altitude, which together regulate the activity of both microbial and invertebrate wood-decomposers. CWD decomposition rate increased with increments in temperature and precipitation, but decreased with increases in latitude and altitude. CWD decomposition was also sensitive to wood size, density, position (standing vs downed), and tree species. The sensitivity analysis showed that fungi are the most important decomposers of woody debris, accounting for over 50% mass loss in nearly all climatic zones in North America. The model includes invertebrate decomposers, focusing mostly on termites, which can have an important role in CWD decomposition in tropical and some subtropical regions. The role of termites in woody debris decomposition varied widely, between 0 and 40%, from temperate areas to tropical regions. Woody debris decomposition rates simulated for eighty-nine locations in North America were within the published range of woody debris decomposition rates for regions in northern hemisphere from 1.6° N to 68.3° N and in Australia

    Coarse Woody Debris Decomposition Assessment Tool: Model Validation and Application

    Get PDF
    Coarse woody debris (CWD) is a significant component of the forest biomass pool; hence a model is warranted to predict CWD decomposition and its role in forest carbon (C) and nutrient cycling under varying management and climatic conditions. A process-based model, CWDDAT (Coarse Woody Debris Decomposition Assessment Tool) was calibrated and validated using data from the FACE (Free Air Carbon Dioxide Enrichment) Wood Decomposition Experiment utilizing pine (Pinus taeda), aspen (Populous tremuloides) and birch (Betula papyrifera) on nine Experimental Forests (EF) covering a range of climate, hydrology, and soil conditions across the continental USA. The model predictions were evaluated against measured FACE log mass loss over 6 years. Four widely applied metrics of model performance demonstrated that the CWDDAT model can accurately predict CWD decomposition. The R2 (squared Pearson’s correlation coefficient) between the simulation and measurement was 0.80 for the model calibration and 0.82 for the model validation (P\u3c0.01). The predicted mean mass loss from all logs was 5.4% lower than the measured mass loss and 1.4% lower than the calculated loss. The model was also used to assess the decomposition of mixed pine-hardwood CWD produced by Hurricane Hugo in 1989 on the Santee Experimental Forest in South Carolina, USA. The simulation reflected rapid CWD decomposition of the forest in this subtropical setting. The predicted dissolved organic carbon (DOC) derived from the CWD decomposition and incorporated into the mineral soil averaged 1.01 g C m-2 y-1 over the 30 years. The main agents for CWD mass loss were fungi (72.0%) and termites (24.5%), the remainder was attributed to a mix of other wood decomposers. These findings demonstrate the applicability of CWDDAT for large-scale assessments of CWD dynamics, and fine-scale considerations regarding the fate of CWD carbon

    The Atacama Cosmology Telescope: The LABOCA/ACT Survey of Clusters at All Redshifts

    Full text link
    We present a multi-wavelength analysis of eleven Sunyaev Zel'dovich effect (SZE)-selected galaxy clusters (ten with new data) from the Atacama Cosmology Telescope (ACT) southern survey. We have obtained new imaging from the Large APEX Bolometer Camera (345GHz; LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope, the Australia Telescope Compact Array (2.1GHz; ATCA), and the Spectral and Photometric Imaging Receiver (250, 350, and 500μm500\,\rm\mu m; SPIRE) on the Herschel Space Observatory. Spatially-resolved 345GHz SZE increments with integrated S/N > 5 are found in six clusters. We compute 2.1GHz number counts as a function of cluster-centric radius and find significant enhancements in the counts of bright sources at projected radii θ<θ2500\theta < \theta_{2500}. By extrapolating in frequency, we predict that the combined signals from 2.1GHz-selected radio sources and 345GHz-selected SMGs contaminate the 148GHz SZE decrement signal by ~5% and the 345GHz SZE increment by ~18%. After removing radio source and SMG emission from the SZE signals, we use ACT, LABOCA, and (in some cases) new Herschel SPIRE imaging to place constraints on the clusters' peculiar velocities. The sample's average peculiar velocity relative to the cosmic microwave background is 153±383kms1153\pm 383\,\rm km\,s^{-1}.Comment: 19 pages, 11 figures, Accepted for Publication in The Astrophysical Journa

    Fungal endophytes and origins of decay in beech (Fagus sylvatica) sapwood

    Get PDF
    Sapwood comprises much above-ground forest biomass, but its mycobiome in living trees is largely unknown. Here, we characterize the endophytic fungal communities of the functional sapwood of young and mature living beech trees (Fagus sylvatica) at multiple scales, from within individual trees to woodland sites across the southern United Kingdom. Fungal community composition was determined using both culture-based and molecular approaches across two loci. Wood decay fungi, including those that cause heart rot, were detected in approximately 80% of all samples. Fungal community composition differed according to the survey approach (high throughput sequencing vs. isolation of fungi into culture) and between geographic location and individual trees, but no significant patterns were detected at different heights in individual trees or around their circumferences. ITS and LSU sequencing detected more distinct taxa than culturing. However, LSU primers yielded more OTUs than did ITS primers, though both identified unique OTUs. This highlights the importance of multiple survey approaches, including multiple primer pairs, for better characterisation of communities and confidence in results of endophyte studies

    Context-dependent conservation responses to emerging wildlife diseases

    Get PDF
    Emerging infectious diseases pose an important threat to wildlife. While established protocols exist for combating outbreaks of human and agricultural pathogens, appropriate management actions before, during, and after the invasion of wildlife pathogens have not been developed. We describe stage-specific goals and management actions that minimize disease impacts on wildlife, and the research required to implement them. Before pathogen arrival, reducing the probability of introduction through quarantine and trade restrictions is key because prevention is more cost effective than subsequent responses. On the invasion front, the main goals are limiting pathogen spread and preventing establishment. In locations experiencing an epidemic, management should focus on reducing transmission and disease, and promoting the development of resistance or tolerance. Finally, if pathogen and host populations reach a stable stage, then recovery of host populations in the face of new threats is paramount. Successful management of wildlife disease requires risk-taking, rapid implementation, and an adaptive approach."Funding was provided by the US National Science Foundation (grants EF-0914866, DGE-0741448, DEB-1115069, DEB-1336290) and the National Institutes of Health (grant 1R010AI090159)."https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/14024

    Non-Equilibrium Large N Yukawa Dynamics: marching through the Landau pole

    Get PDF
    The non-equilibrium dynamics of a Yukawa theory with N fermions coupled to a scalar field is studied in the large N limit with the goal of comparing the dynamics predicted from the renormalization group improved effective potential to that obtained including the fermionic backreaction. The effective potential is of the Coleman-Weinberg type. Its renormalization group improvement is unbounded from below and features a Landau pole. When viewed self-consistently, the initial time singularity does not arise. The different regimes of the dynamics of the fully renormalized theory are studied both analytically and numerically. Despite the existence of a Landau pole in the model, the dynamics of the mean field is smooth as it passes the location of the pole. This is a consequence of a remarkable cancellation between the effective potential and the dynamical chiral condensate. The asymptotic evolution is effectively described by a quartic upright effective potential. In all regimes, profuse particle production results in the formation of a dense fermionic plasma with occupation numbers nearly saturated up to a scale of the order of the mean field. This can be interpreted as a chemical potential. We discuss the implications of these results for cosmological preheating.Comment: 36 pages, 14 figures, LaTeX, submitted to Physical Review
    corecore