3 research outputs found

    Coumarin-Based Photodegradable Hydrogel: Design, Synthesis, Gelation, and Degradation Kinetics

    No full text
    The design, synthesis, and characterization of a new class of coumarin-based photodegradable hydrogels are reported. Hydrogel formation was achieved rapidly and efficiently under aqueous conditions using copper-catalyzed click chemistry, which afforded excellent control over the rate of network formation. Rapid photodegradation, to the point of reverse gelation, was observed using both 365 and 405 nm light, and micrometer-scale features were eroded using two-photon irradiation at wavelengths as long as 860 nm

    Photocontrolled Nanoparticles for On-Demand Release of Proteins

    No full text
    We describe here light-regulated swelling and degradation features of polymeric nanoparticles that are produced using an inverse microemulsion polymerization method. We demonstrate the phototriggered release characteristics of the nanoparticles by sequestering protein molecules and releasing them using light as a trigger. Furthermore, the intracellular translocation of the nanoparticles, along with its fluorescent protein payload, was achieved using a cell-penetrating peptide-based surface modification. We expect that the noncovalent encapsulation of proteins using nanoparticles and their photo triggered release using an external light would provide opportunities for achieving intracellular release of molecular therapeutics for on-demand requirements

    Sequential Thiol–Ene and Tetrazine Click Reactions for the Polymerization and Functionalization of Hydrogel Microparticles

    No full text
    Click chemistry is a versatile tool for the synthesis and functionalization of polymeric biomaterials. Here, we describe a versatile new strategy for producing bioactive, protein-functionalized poly­(ethylene glycol) (PEG) hydrogel microparticles that is based on sequential thiol–ene and tetrazine click reactions. Briefly, tetra-functional PEG-norbornene macromer and dithiothreitol (SH) cross-linker were combined at a 0.75:1 [SH]:[norbornene] ratio, emulsified in a continuous Dextran phase, and then photopolymerized to form PEG hydrogel microparticles that varied from 8 to 30 μm in diameter, depending on the PEG concentration used. Subsequently, tetrazine-functionalized protein was conjugated to unreacted norbornene groups in the PEG microparticles. Tetrazine-mediated protein tethering to the microparticles was first demonstrated using fluorescein-labeled ovalbumin as a model protein. Subsequently, bioactive protein tethering was demonstrated using alkaline phosphatase (ALP) and glucose oxidase (GOx). Enzyme activity assays demonstrated that both ALP and GOx maintained their bioactivity and imparted tunable bioactivity to the microparticles that depended on the amount of enzyme added. ALP-functionalized microparticles were also observed to initiate calcium phosphate mineralization <i>in vitro</i> when incubated with calcium glycerophosphate. Collectively, these results show that protein-functionalized hydrogel microparticles with tunable bioactive properties can be easily synthesized using sequential click chemistry reactions. This approach has potential for future applications in tissue engineering, drug delivery, and biosensing
    corecore