272 research outputs found
Fast computation of the matrix exponential for a Toeplitz matrix
The computation of the matrix exponential is a ubiquitous operation in
numerical mathematics, and for a general, unstructured matrix it
can be computed in operations. An interesting problem arises
if the input matrix is a Toeplitz matrix, for example as the result of
discretizing integral equations with a time invariant kernel. In this case it
is not obvious how to take advantage of the Toeplitz structure, as the
exponential of a Toeplitz matrix is, in general, not a Toeplitz matrix itself.
The main contribution of this work are fast algorithms for the computation of
the Toeplitz matrix exponential. The algorithms have provable quadratic
complexity if the spectrum is real, or sectorial, or more generally, if the
imaginary parts of the rightmost eigenvalues do not vary too much. They may be
efficient even outside these spectral constraints. They are based on the
scaling and squaring framework, and their analysis connects classical results
from rational approximation theory to matrices of low displacement rank. As an
example, the developed methods are applied to Merton's jump-diffusion model for
option pricing
Fast computation of spectral projectors of banded matrices
We consider the approximate computation of spectral projectors for symmetric
banded matrices. While this problem has received considerable attention,
especially in the context of linear scaling electronic structure methods, the
presence of small relative spectral gaps challenges existing methods based on
approximate sparsity. In this work, we show how a data-sparse approximation
based on hierarchical matrices can be used to overcome this problem. We prove a
priori bounds on the approximation error and propose a fast algo- rithm based
on the QDWH algorithm, along the works by Nakatsukasa et al. Numerical
experiments demonstrate that the performance of our algorithm is robust with
respect to the spectral gap. A preliminary Matlab implementation becomes faster
than eig already for matrix sizes of a few thousand.Comment: 27 pages, 10 figure
A block Newton method for nonlinear eigenvalue problems
We consider matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. One of the most fundamental differences from the linear case is that distinct eigenvalues may have linearly dependent eigenvectors or even share the same eigenvector. This has been a severe hindrance in the development of general numerical schemes for computing several eigenvalues of a nonlinear eigenvalue problem, either simultaneously or subsequently. The purpose of this work is to show that the concept of invariant pairs offers a way of representing eigenvalues and eigenvectors that is insensitive to this phenomenon. To demonstrate the use of this concept in the development of numerical methods, we have developed a novel block Newton method for computing such invariant pairs. Algorithmic aspects of this method are considered and a few academic examples demonstrate its viabilit
A literature survey of low-rank tensor approximation techniques
During the last years, low-rank tensor approximation has been established as
a new tool in scientific computing to address large-scale linear and
multilinear algebra problems, which would be intractable by classical
techniques. This survey attempts to give a literature overview of current
developments in this area, with an emphasis on function-related tensors
Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure
The numerical solution of partial differential equations on high-dimensional
domains gives rise to computationally challenging linear systems. When using
standard discretization techniques, the size of the linear system grows
exponentially with the number of dimensions, making the use of classic
iterative solvers infeasible. During the last few years, low-rank tensor
approaches have been developed that allow to mitigate this curse of
dimensionality by exploiting the underlying structure of the linear operator.
In this work, we focus on tensors represented in the Tucker and tensor train
formats. We propose two preconditioned gradient methods on the corresponding
low-rank tensor manifolds: A Riemannian version of the preconditioned
Richardson method as well as an approximate Newton scheme based on the
Riemannian Hessian. For the latter, considerable attention is given to the
efficient solution of the resulting Newton equation. In numerical experiments,
we compare the efficiency of our Riemannian algorithms with other established
tensor-based approaches such as a truncated preconditioned Richardson method
and the alternating linear scheme. The results show that our approximate
Riemannian Newton scheme is significantly faster in cases when the application
of the linear operator is expensive.Comment: 24 pages, 8 figure
Low-rank updates and a divide-and-conquer method for linear matrix equations
Linear matrix equations, such as the Sylvester and Lyapunov equations, play
an important role in various applications, including the stability analysis and
dimensionality reduction of linear dynamical control systems and the solution
of partial differential equations. In this work, we present and analyze a new
algorithm, based on tensorized Krylov subspaces, for quickly updating the
solution of such a matrix equation when its coefficients undergo low-rank
changes. We demonstrate how our algorithm can be utilized to accelerate the
Newton method for solving continuous-time algebraic Riccati equations. Our
algorithm also forms the basis of a new divide-and-conquer approach for linear
matrix equations with coefficients that feature hierarchical low-rank
structure, such as HODLR, HSS, and banded matrices. Numerical experiments
demonstrate the advantages of divide-and-conquer over existing approaches, in
terms of computational time and memory consumption
- …