10 research outputs found

    Parametric study of the energy potential of a building’s envelope with integrated energy-active elements

    Get PDF
    Building structures with integrated energy-active elements (BSIEAE) present a progressive alternative for building construction with multifunctional energy functions. The aim was to determine the energy potential of a building envelope with integrated energy-active elements in the function of direct-heating, semi-accumulation and accumulation of large-area radiant heating. The research methodology consists in an analysis of building structures with energy-active elements, creation of mathematical-physical models based on the simplified definition of heat and mass transfer in radiant large-area heating, and a parametric study of the energy potential of individual variants of technical solutions. The results indicate that the increase in heat loss due to the location of the tubes in the structure closer to the exterior is negligible for Variant II, semi-accumulation heating, and Variant III, accumulation heating, as compared to Variant I, direct heating, it is below 1 % of the total delivered heat flux. The direct heat flux to the heated room is 89.17 %, 73.36 %, and 58.46 % of the total heat flux for Variant I, Variant II and Variant III, respectively. For Variant II and Variant III, the heat storage accounts for 14.84 %, and 29.86 % of the total heat flux, respectively. Variants II and III appear to be promising in terms of heat/cool accumulation with an assumption of lower energy demand (at least 10 %) than for low inertia walls. We plan to extend these simplified parametric studies with dynamic computer simulations to optimise the design and composition of the panels with integrated energy-active elements

    Parametric study of the energy potential of a building’s envelope with integrated energy-active elements

    Get PDF
    Building structures with integrated energy-active elements (BSIEAE) present a progressive alternative for building construction with multifunctional energy functions. The aim was to determine the energy potential of a building envelope with integrated energy-active elements in the function of direct-heating, semi-accumulation and accumulation of large-area radiant heating. The research methodology consists in an analysis of building structures with energy-active elements, creation of mathematical-physical models based on the simplified definition of heat and mass transfer in radiant large-area heating, and a parametric study of the energy potential of individual variants of technical solutions. The results indicate that the increase in heat loss due to the location of the tubes in the structure closer to the exterior is negligible for Variant II, semi-accumulation heating, and Variant III, accumulation heating, as compared to Variant I, direct heating, it is below 1 % of the total delivered heat flux. The direct heat flux to the heated room is 89.17 %, 73.36 %, and 58.46 % of the total heat flux for Variant I, Variant II and Variant III, respectively. For Variant II and Variant III, the heat storage accounts for 14.84 %, and 29.86 % of the total heat flux, respectively. Variants II and III appear to be promising in terms of heat/cool accumulation with an assumption of lower energy demand (at least 10 %) than for low inertia walls. We plan to extend these simplified parametric studies with dynamic computer simulations to optimise the design and composition of the panels with integrated energy-active elements

    UTILIZATION OF IMAGE AND SIGNAL PROCESSING TECHNIQUES FOR ASSESSMENT OF BUILT HERITAGE CONDITION

    Get PDF
    Historical buildings represent invaluable heritage from the past and therefore their protection is a very important task. Assessment of their condition must not cause damage accumulation, thus the least possible volume removed from the structure is essential. As many historical buildings in the Czech Republic are built using sandstone that can be considered as a typical heterogeneous system, statistical signal processing is a promising approach for determination of the representative volume element (RVE) dimensions. Such calculations can be carried out on the domain of logical arrays representing binary images of the materials microstructure. This paper deals with processing of image data obtained using SEM-BSE and high resolution flatbed scanner for determination of RVE dimensions. Advanced image processing techniques are employed and results from calculation using grayscale data are presented and compared with results calculated on the basis of color input images

    Energy, Economic and Environmental Assessment of Thermal Barrier Application in Building Envelope Structures

    No full text
    Thermal engineering requirements for building structures are becoming more and more strict. Thermal barriers (TBs) are energy-active elements integrated into the building structure in which a heat transfer medium (water or air) flows. A survey of the scientific literature on the subject points to the fact that this is a very topical and promising area of research and, so far, most studies on TBs are based on calculations, computer simulations and experimental measurements. Few studies have focused on the economic and environmental aspects of TB use. Following the research results presented by authors from all over the world, as well as our contributions in this scientific field that are described in a European patent, three utility models and scientific articles, in this study we have focused on the evaluation of the TB in terms of energy performance, economic efficiency and environmental friendliness by comparing the use of a classical envelope wall with the required thickness of thermal insulation meeting the normative requirements for thermal resistance R ((m2K)/W) and a perimeter wall with an integrated TB significantly eliminating the thermal insulation thickness. We evaluate the use of the thermal barrier using: economic indicator one, where we compare the cost of heat delivered to the TB in a structure with significantly eliminated thermal insulation and the saved cost of thermal insulation at the standard thickness; economic indicator two, where we compare the cost of heat delivered to the TB in a structure with significantly eliminated thermal insulation with the potential gain from the sale of the useful area of the building gained compared to the area at the normative thickness of thermal insulation; and economic indicator three, where we compare the cost of heat delivered to the TB in a structure with significantly eliminated thermal insulation with the cost of grey energy at the normative thickness of thermal insulation. Based on a parametric study based on theoretical assumptions, it can be concluded that the thermal barrier shows a very promising and efficient solution in terms of the evaluation of economic indicators one to three, which are even more significant if we use heat for the TB from renewable energy sources (RES) or waste heat

    Experience in Researching and Designing an Innovative Way of Operating Combined Building–Energy Systems Using Renewable Energy Sources

    No full text
    This study describes our experience in researching and designing an innovative way of operating combined building–energy systems using renewable energy sources. We used the concepts of the ISOMAX integrated building–energy system’s patented technical solution, which we have long been exploring and have developed various novel and original solutions, as inspiration for our research. A consistent peak heat/cooling supply is a key component of the patented ISOMAX system, which has also been proven in its use in many buildings. Energy systems are no longer dependent on unreliable, unpredictable, and hard-to-forecast geothermal and solar energy because of the peak energy source. We had to improve the original design to guarantee the efficient, comfortable, and dependable operation of all the energy systems in the building. We increased the capacity of the ventilation system by including a peak heat/cooling source, a short-term heat/cooling storage tank, and the option of using an air handling unit with heat recovery or a water/air heat exchanger. The addition of terminal elements for heating, cooling, and ventilation systems was also made, along with including a solar system, a wind turbine, and the potential for waste heat recovery. Our study led to the creation of a unique operating model that, with the building management system, optimizes all of the energy systems and heating/cooling sources. The utility model SK 5749 Y1 analyzes the various alternatives in great detail

    Contribution to Active Thermal Protection Research—Part 2 Verification by Experimental Measurement

    No full text
    This article is closely related to the oldest article titled Contribution to Active Thermal Protection Research—Part 1 Analysis of Energy Functions by Parametric Study. It is a continuation of research that focuses on verifying the energy potential and functions of so-called active thermal protection (ATP). As mentioned in the first part, the amount of thermal energy consumed for heating buildings is one of the main parameters that determine their future design, especially the technical equipment. The issue of reducing the consumption of this energy is implemented in various ways, such as passive thermal protection, i.e., by increasing the thermal insulation parameters of the individual materials of the building envelope or by optimizing the operation of the technical equipment of the buildings. On the other hand, there are also methods of active thermal protection that aim to reduce heat leakage through nontransparent parts of the building envelope. This methodology is based on the validation of the results of a parametric study of the dynamic thermal resistance (DTR) and the heat fluxes to the interior and exterior from the ATP for the investigated envelope of the experimental house EB2020 made of aerated concrete blocks, presented in the article “Contribution to the research on active thermal protection—Part 1, Analysis of energy functions by the parametric study”, by long-term experimental measurements. The novelty of the research lies in the involvement of variant-peak heat/cooling sources in combination with RES and in creating a new, original way of operating energy systems with the possibility of changing and combining the operating modes of the ATP. We have verified the operation of the experimental house in the energy functions of thermal barrier, heating/cooling with RES, and without RES and ATP. The energy saving when using RES and ATP is approximately 37%. Based on the synthesis and induction of analogous forms of the results of previous research into recommendations for the development of building envelopes with energy-active elements, we present further possible outcomes in the field of ATP, as well as already realized and upcoming prototypes of thermal insulation panels

    Phosphorylation of tyrosine 90 in SH3 domain is a new regulatory switch controlling Src kinase

    No full text
    The activation of Src kinase in cells is strictly controlled by intramolecular inhibitory interactions mediated by SH3 and SH2 domains. They impose structural constraints on the kinase domain holding it in a catalytically non-permissive state. The transition between inactive and active conformation is known to be largely regulated by the phosphorylation state of key tyrosines 416 and 527. Here, we identified that phosphorylation of tyrosine 90 reduces binding affinity of the SH3 domain to its interacting partners, opens the Src structure, and renders Src catalytically active. This is accompanied by an increased affinity to the plasma membrane, decreased membrane motility, and slower diffusion from focal adhesions. Phosphorylation of tyrosine 90 controlling SH3-medited intramolecular inhibitory interaction, analogical to tyrosine 527 regulating SH2-C-terminus bond, enables SH3 and SH2 domains to serve as cooperative but independent regulatory elements. This mechanism allows Src to adopt several distinct conformations of varying catalytic activities and interacting properties, enabling it to operate not as a simple switch but as a tunable regulator functioning as a signalling hub in a variety of cellular processes

    ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility.

    No full text
    The tyrosine kinase Src acts as a key regulator of cell motility by phosphorylating multiple protein substrates that control cytoskeletal and adhesion dynamics. In an earlier phosphotyrosine proteomics study we identified a novel Rho‑GTPase activating protein, now called ARHGAP42, as a likely biologically relevant Src substrate. ARHGAP42 is a member of a family of RhoGAPs distinguished by tandem BAR‑PH domains lying N‑terminal to the GAP domain. Like other family members, ARHGAP42 acts preferentially as a GAP for RhoA. We show that Src principally phosphorylates ARHGAP42 on tyrosine 376 (Tyr‑376) in the short linker between the BAR‑PH and GAP domains. ARHGAP42 regulation was investigated by expression in mammalian cells. We found that the BAR domain is inhibitory toward the GAP activity of ARHGAP42, such that BAR domain deletion resulted in decreased active GTP‑bound RhoA and increased cell motility. With the BAR domain intact, ARHGAP42 GAP activity could be activated by phosphorylation of Tyr‑376 to promote motile cell behavior. Thus phosphorylation of ARHGAP42 Tyr‑376 is revealed as a novel regulatory event by which Src can affect actin dynamics through RhoA inhibition
    corecore