7 research outputs found

    Effect of Calcium Ions and Disulfide Bonds on Swelling of Virus Particles

    No full text
    Multivalent ions affect the structure and organization of virus nanoparticles. Wild-type simian virus 40 (wt SV40) is a nonenveloped virus belonging to the polyomavirus family, whose external diameter is 48.4 nm. Calcium ions and disulfide bonds are involved in the stabilization of its capsid and are playing a role in its assembly and disassembly pathways. Using solution small-angle X-ray scattering (SAXS), we found that the volume of wt SV40 swelled by about 17% when both of its calcium ions were chelated by ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid and its disulfide bonds were reduced by dithiothreitol. By applying osmotic stress, the swelling could be reversed. DNA-containing virus-like particles behaved in a similar way. The results provide insight into the structural role of calcium ions and disulfide bonds in holding the capsid proteins in compact conformation

    Effect of Calcium Ions and Disulfide Bonds on Swelling of Virus Particles

    No full text
    Multivalent ions affect the structure and organization of virus nanoparticles. Wild-type simian virus 40 (wt SV40) is a nonenveloped virus belonging to the polyomavirus family, whose external diameter is 48.4 nm. Calcium ions and disulfide bonds are involved in the stabilization of its capsid and are playing a role in its assembly and disassembly pathways. Using solution small-angle X-ray scattering (SAXS), we found that the volume of wt SV40 swelled by about 17% when both of its calcium ions were chelated by ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid and its disulfide bonds were reduced by dithiothreitol. By applying osmotic stress, the swelling could be reversed. DNA-containing virus-like particles behaved in a similar way. The results provide insight into the structural role of calcium ions and disulfide bonds in holding the capsid proteins in compact conformation

    pH stability and disassembly mechanism of wild-type simian virus 40

    No full text
    Viruses are remarkable self-assembled nanobiomaterial-based machines, exposed to a wide range of pH values. Extreme pH values can induce dramatic structural changes, critical for the function of the virus nanoparticles, including assembly and genome uncoating. Tuning cargo–capsid interactions is essential for designing virus-based delivery systems. Here we show how pH controls the structure and activity of wild-type simian virus 40 (wtSV40) and the interplay between its cargo and capsid. Using cryo-TEM and solution X-ray scattering, we found that wtSV40 was stable between pH 5.5 and 9, and only slightly swelled with increasing pH. At pH 3, the particles aggregated, while capsid protein pentamers continued to coat the virus cargo but lost their positional correlations. Infectivity was only partly lost after the particles were returned to pH 7. At pH 10 or higher, the particles were unstable, lost their infectivity, and disassembled. Using time-resolved experiments we discovered that disassembly began by swelling of the particles, poking a hole in the capsid through which the genetic cargo escaped, followed by a slight shrinking of the capsids and complete disassembly. These findings provide insight into the fundamental intermolecular forces, essential for SV40 function, and for designing virus-based nanobiomaterials, including delivery systems and antiviral drugs

    D+: Software for High-Resolution Hierarchical Modeling of Solution X-Ray Scattering from Complex Structures

    No full text
    In this paper, we present our new computer program, D+, which uses the reciprocal-grid (RG) algorithm to efficiently compute X-ray scattering curves from solutions of complex structures at high-resolution. Structures are defined in hierarchical trees in which subunits can be represented by geometric or atomic models. Repeating subunits can be docked into their assembly symmetries, describing their locations and orientations in space. The scattering amplitude of the entire structure can be calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the RGs of the larger structures, and by repeating this process for all the leaves and nodes of the tree. For very large structures, a Hybrid method can be used to avoid numerical artifacts. In the Hybrid method, only grids of smaller subunits are summed and used as subunits in a direct computation of the scattering amplitude. D+ can accurately analyze both small- and wide-angle solution X-ray scattering data. We present how D+ applies the RG algorithm, accounts for rotations and translations of subunits, processes atomic models, accounts for the contribution of the solvent as well as the solvation layer of complex structures in a scalable manner, writes and accesses RGs, interpolates between grid points, computes numerical integrals, enables the use of scripts to define complicated structures, applies fitting algorithms, accounts for several coexisting uncorrelated populations, and accelerates computations using GPUs. D+ may also account for different X-ray energies to analyze anomalous solution X-ray scattering data. An accessory tool that can identify repeating subunits in a protein data bank (PDB) file of a complex structure is provided. The tool can compute the orientation and translation of repeating subunits needed for exploiting the advantages of the RG algorithm in D+. In addition, a python wrapper is also available, enabling more advanced computations and integration of D+ with other computational tools. Finally, we present a large number of tests and compare the results of D+ with other programs when possible and demonstrate the use of D+ to analyze solution scattering data from dynamic microtubule structures with different protofilament number. D+ and its source code are freely available (https://scholars.huji.ac.il/uriraviv/software/d-software) for academic users and developers

    D+: Software for High-Resolution Hierarchical Modeling of Solution X-Ray Scattering from Complex Structures

    No full text
    In this paper, we present our new computer program, D+, which uses the reciprocal-grid (RG) algorithm to efficiently compute X-ray scattering curves from solutions of complex structures at high-resolution. Structures are defined in hierarchical trees in which subunits can be represented by geometric or atomic models. Repeating subunits can be docked into their assembly symmetries, describing their locations and orientations in space. The scattering amplitude of the entire structure can be calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the RGs of the larger structures, and by repeating this process for all the leaves and nodes of the tree. For very large structures, a Hybrid method can be used to avoid numerical artifacts. In the Hybrid method, only grids of smaller subunits are summed and used as subunits in a direct computation of the scattering amplitude. D+ can accurately analyze both small- and wide-angle solution X-ray scattering data. We present how D+ applies the RG algorithm, accounts for rotations and translations of subunits, processes atomic models, accounts for the contribution of the solvent as well as the solvation layer of complex structures in a scalable manner, writes and accesses RGs, interpolates between grid points, computes numerical integrals, enables the use of scripts to define complicated structures, applies fitting algorithms, accounts for several coexisting uncorrelated populations, and accelerates computations using GPUs. D+ may also account for different X-ray energies to analyze anomalous solution X-ray scattering data. An accessory tool that can identify repeating subunits in a protein data bank (PDB) file of a complex structure is provided. The tool can compute the orientation and translation of repeating subunits needed for exploiting the advantages of the RG algorithm in D+. In addition, a python wrapper is also available, enabling more advanced computations and integration of D+ with other computational tools. Finally, we present a large number of tests and compare the results of D+ with other programs when possible and demonstrate the use of D+ to analyze solution scattering data from dynamic microtubule structures with different protofilament number. D+ and its source code are freely available (https://scholars.huji.ac.il/uriraviv/software/d-software) for academic users and developers. </div

    Structural Differences between the Woodchuck Hepatitis Virus Core Protein in the Dimer and Capsid States Are Consistent with Entropic and Conformational Regulation of Assembly

    No full text
    Hepadnaviruses are hepatotropic enveloped DNA viruses with an icosahedral capsid. Hepatitis B virus (HBV) causes chronic infection in an estimated 240 million people; woodchuck hepatitis virus (WHV), an HBV homologue, has been an important model system for drug development. The dimeric capsid protein (Cp) has multiple functions during the viral life cycle and thus has become an important target for a new generation of antivirals. Purified HBV and WHV Cp spontaneously assemble into 120-dimer capsids. Though they have 65% identity, WHV Cp has error-prone assembly with stronger protein-protein association. We have taken advantage of the differences in assemblies to investigate the basis of assembly regulation. We determined the structures of the WHV capsid to 4.5-Å resolution by cryo-electron microscopy (cryo-EM) and of the WHV Cp dimer to 2.9-Å resolution by crystallography and examined the biophysical properties of the dimer. We found, in dimer, that the subdomain that makes protein-protein interactions is partially disordered and rotated 21° from its position in capsid. This subdomain is susceptible to proteolysis, consistent with local disorder. WHV assembly shows similar susceptibility to HBV antiviral molecules, suggesting that HBV assembly follows similar transitions. These data show that there is an entropic cost for assembly that is compensated for by the energetic gain of burying hydrophobic interprotein contacts. We propose a series of stages in assembly that incorporate a disorder-to-order transition and structural shifts. We suggest that a cascade of structural changes may be a common mechanism for regulating high-fidelity capsid assembly in HBV and other viruses
    corecore