458 research outputs found

    Nucleic Acids Encoding \u3cem\u3eSarcocystis Neurona\u3c/em\u3e Antigen and Uses Thereof

    Get PDF
    The present invention provides novel isolated nucleic acids encoding antigenic proteins derived from Sarcocystis neurona, or unique fragments thereof. In particular, the invention provides novel isolated nucleic acids encoding membrane-associated polypeptides SnSAG2, SnSAG3, and SnSAG4. Also provided are purified antigenic polypeptide fragments encoded by the novel nucleic acid sequences set forth herein that encode for SnSAG2, SnSAG3, and SnSAG4. Also provided are isolated nucleic acids capable of selectively hybridizing with the nucleic acid from Sarcocystis neurona. The invention also provides vectors comprising the nucleic acids of the invention encoding an antigenic protein derived from Sarcocystis neurona or a unique fragment thereof and provides the vector in a host capable of expressing the polypeptide encoded by that nucleic acid

    Nucleic Acids Encoding \u3cem\u3eSarcocystis Neurona\u3c/em\u3e Antigen and Uses Thereof

    Get PDF
    The present invention provides novel isolated nucleic acids encoding antigenic proteins derived fromSarcocystis neurona, or unique fragments thereof. In particular, the invention provides novel isolated nucleic acids encoding membrane-associated polypeptides SnSAG2, SnSAG3, and SnSAG 4. Also provided are purified antigenic polypeptide fragments encoded by the novel nucleic acid sequences set forth herein that encode for SnSAG2, SnSAG3, and SnSAG 4. Also provided are isolated nucleic acids capable of selectively hybridizing with the nucleic acid from Sarcocystis neurona. The invention also provides vectors comprising the nucleic acids of the invention encoding an antigenic protein derived from Sarcocystis neurona or a unique fragment thereof and provides the vector in a host capable of expressing the polypeptide encoded by that nucleic acid. Finally, the invention provides purified polyclonal and/or monoclonal antibodies specifically reactive with Sarcocystis neurona and a method of detection of Sarcocystis neurona utilizing the antibodies of the invention

    Diagnosis of \u3cem\u3eStrongylus Vulgaris\u3c/em\u3e

    Get PDF
    Embodiments of the presently-disclosed subject matter provide an isolated polypeptide comprising the sequence of SEQ ID NO: 1, fragments thereof, and/or epitopes thereof. Embodiments of the presently-disclosed subject matter also provide methods for diagnosing a Strongylus vulgaris infection in a subject that comprises providing a biological sample from the subject and contacting the sample with the present isolated polypeptide, fragment thereof, and/or epitope thereof. In some embodiments theStrongylus vulgaris infection can be detected during a prepatent period. In further embodiments the subject is a horse

    Characterization of mRNA Polyadenylation in the Apicomplexa

    Get PDF
    Messenger RNA polyadenylation is a universal aspect of gene expression in eukaryotes. In well-established model organisms, this process is mediated by a conserved complex of 15–20 subunits. To better understand this process in apicomplexans, a group of unicellular parasites that causes serious disease in humans and livestock, a computational and high throughput sequencing study of the polyadenylation complex and poly(A) sites in several species was conducted. BLAST-based searches for orthologs of the human polyadenylation complex yielded clear matches to only two—poly(A) polymerase and CPSF73—of the 19 proteins used as queries in this analysis. As the human subunits that recognize the AAUAAA polyadenylation signal (PAS) were not immediately obvious, a computational analysis of sequences adjacent to experimentally-determined apicomplexan poly(A) sites was conducted. The results of this study showed that there exists in apicomplexans an A-rich region that corresponds in position to the AAUAAA PAS. The set of experimentally-determined sites in one species, Sarcocystis neurona, was further analyzed to evaluate the extent and significance of alternative poly(A) site choice in this organism. The results showed that almost 80% of S. neurona genes possess more than one poly(A) site, and that more than 780 sites showed differential usage in the two developmental stages–extracellular merozoites and intracellular schizonts–studied. These sites affected more than 450 genes, and included a disproportionate number of genes that encode membrane transporters and ribosomal proteins. Taken together, these results reveal that apicomplexan species seem to possess a poly(A) signal analogous to AAUAAA even though genes that may encode obvious counterparts of the AAUAAA-recognizing proteins are absent in these organisms. They also indicate that, as is the case in other eukaryotes, alternative polyadenylation is a widespread phenomenon in S. neurona that has the potential to impact growth and development

    The In-Feed Antibiotic Carbadox Induces Phage Gene Transcription in the Swine Gut Microbiome

    Get PDF
    Carbadox is a quinoxaline-di-N-oxide antibiotic fed to over 40% of young pigs in the United States that has been shown to induce phage DNA transduction in vitro; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the in vivo longitudinal effects of carbadox on swine gut microbial gene expression (fecal metatranscriptome) and phage population dynamics (fecal dsDNA viromes). Microbial metagenome, transcriptome, and virome sequences were annotated for taxonomic inference and gene function by using FIGfam (isofunctional homolog sequences) and SEED subsystems databases. When the beta diversities of microbial FIGfam annotations were compared, the control and carbadox communities were distinct 2 days after carbadox introduction. This effect was driven by carbadox-associated lower expression of FIGfams (n = 66) related to microbial respiration, carbohydrate utilization, and RNA metabolism (q \u3c 0.1), suggesting bacteriostatic or bactericidal effects within certain populations. Interestingly, carbadox treatment caused greater expression of FIGfams related to all stages of the phage lytic cycle 2 days following the introduction of carbadox (q ≤0.07), suggesting the carbadox-mediated induction of prophages and phage DNA recombination. These effects were diminished by 7 days of continuous carbadox in the feed, suggesting an acute impact. Additionally, the viromes included a few genes that encoded resistance to tetracycline, aminoglycoside, and beta-lactam antibiotics but these did not change in frequency over time or with treatment. The results show decreased bacterial growth and metabolism, prophage induction, and potential transduction of bacterial fitness genes in swine gut bacterial communities as a result of carbadox administration

    Protozoal Coinfection in Horses with Equine Protozoal Myeloencephalitis in the Eastern United States

    Get PDF
    Background: Infection by 2 or more protozoa is linked with increased severity of disease in marine mammals with protozoan encephalitis. Hypothesis/Objectives: To assess whether horses with equine protozoal myeloencephalitis (EPM) caused by Sarcocystis neurona also have evidence of infection with Neospora hughesi or Toxoplasma gondii. We hypothesized that horses with EPM would be more likely than horses with cervical vertebral stenotic myelopathy (CVSM) to be positive for antibodies to multiple protozoan parasites. Animals: One hundred one horses with neurologic disease: 49 with EPM and 52 with CVSM. Methods: Case review. Archived serum and cerebrospinal fluid (CSF) from 101 horses were examined. Inclusion criteria included neurologic disease, antemortem or postmortem diagnosis of EPM or CVSM, and availability of serological results or archived samples for testing. Additional testing for antibodies was performed on serum for T. gondii, as well as serum and CSF for N. hughesi. Results: Horses with EPM were more likely than horses with CVSM to have positive immunologic results for S. neurona on serum (95.9% versus 76.9%, P = .0058), CSF (98.0% versus 44.2%, P \u3c .00001), and serum : CSF titer ratio (91.8% versus 0%, P \u3c .00001). Positive results for Neospora and Toxoplasma were uncommon, with total seroprevalence rates of 12.9% and 14.9%, respectively. The proportions of EPM cases testing positive for Neospora and Toxoplasma (16% and 12%) were not different from the proportions of CVSM cases testing positive (10% and 17%, P = .31 and .47, respectively). Conclusion: Results do not indicate an important role for protozoal coinfection in EPM in the eastern United States

    Reactive Oxygen Species Production and Brugia Pahangi Survivorship in Aedes polynesiensis with Artificial Wolbachia Infection Types

    Get PDF
    Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF) throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated MTB ) experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS) in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis. The results are discussed in relation to the interaction of Wolbachia with ROS production and antioxidant expression, iron homeostasis and the insect immune system. We discuss the potential applied use of the MTB strain for impacting Ae. polynesiensis populations and strategies for reducing LF incidence in the South Pacific

    Seroepidemiology of \u3cem\u3eSarcocystis neurona\u3c/em\u3e and \u3cem\u3eNeospora hughesi\u3c/em\u3e Infections in Domestic Donkeys (\u3cem\u3eEquus asinus\u3c/em\u3e) in Durango, Mexico

    Get PDF
    There is currently no information regarding Sarcocystis neurona and Neospora hughesi infections in donkeys in Mexico. Here, we determined the presence of antibodies against S. neurona and N. hughesi in donkeys in the northern Mexican state of Durango. Serum samples of 239 domestic donkeys (Equus asinus) were assayed for S. neurona and N. hughesi antibodies using home-made enzyme-linked immunoassays; six (2.5%) of the 239 donkeys tested seropositive for S. neurona. The seroprevalence of S. neurona infection was comparable among donkeys regardless of their origin, health status, or sex. Multivariate analysis showed that seropositivity to S. neurona was associated with increased age (OR = 2.95; 95% CI: 1.11-7.82; p = 0.02). Antibodies to N. hughesi were found in two (0.8%) of the 239 donkeys. Both exposed donkeys were healthy, 3- and 6-year-old females. This is the first evidence of S. neurona and N. hughesi infections in donkeys in Mexico

    A Serosurvey of Selected Cystogenic Coccidia in Spanish Equids: First Detection of Anti-\u3cem\u3eBesnoitia\u3c/em\u3e spp. Specific Antibodies in Europe

    Get PDF
    Background: Equine besnoitiosis, caused by Besnoitia bennetti, and equine protozoal myeloencephalitis (EPM), caused by Sarcocystis neurona and Neospora hughesi are relevant equine diseases in the Americas that have been scarcely studied in Europe. Thus, a serosurvey of these cystogenic coccidia was carried out in Southern Spain. A cross-sectional study was performed and serum samples from horses (n = 553), donkeys (n = 85) and mules (n = 83) were included. An in-house enzyme-linked immunosorbent assay (ELISA) was employed to identify a Besnoitia spp. infection and positive results were confirmed by an a posteriori western blot. For Neospora spp. and Sarcocystis spp., infections were detected using in-house ELISAs based on the parasite surface antigens N. hughesi rNhSAG1 and S. neurona rSnSAG2/3/4. Risk factors associated with these protozoan infections were also investigated. Results: Antibodies against Besnoitia spp., Neospora spp. and Sarcocystis spp. infections were detected in 51 (7.1%), 46 (6.4%) and 20 (2.8%) of 721 equids, respectively. The principal risk factors associated with a higher seroprevalence of Besnoitia spp. were the host species (mule or donkey), the absence of shelter and the absence of a rodent control programme. The presence of rodents was the only risk factor for Neospora spp. infection. Conclusions: This study was the first extensive serosurvey of Besnoitia spp. infection in European equids accomplished by two complementary tests and gives evidence of the presence of specific antibodies in these populations. However, the origin of the infection is still unclear. Further parasite detection and molecular genotyping are needed to identify the causative Besnoitia and Neospora species. Finally, cross-reactions with antibodies directed against other species of Sarcocystis might explain the positive reactions against the S. neurona antigens

    A serosurvey of selected cystogenic coccidia in Spanish equids: first detection of anti-Besnoitia spp. specific antibodies in Europe

    Get PDF
    © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.[EN]Background: Equine besnoitiosis, caused by Besnoitia bennetti, and equine protozoal myeloencephalitis (EPM), caused by Sarcocystis neurona and Neospora hughesi are relevant equine diseases in the Americas that have been scarcely studied in Europe. Thus, a serosurvey of these cystogenic coccidia was carried out in Southern Spain. A cross-sectional study was performed and serum samples from horses (n=553), donkeys (n=85) and mules (n=83) were included. An in-house enzyme-linked immunosorbent assay (ELISA) was employed to identify a Besnoitia spp. infection and positive results were confirmed by an a posteriori western blot. For Neospora spp. and Sarcocystis spp., infections were detected using in-house ELISAs based on the parasite surface antigens N. hughesi rNhSAG1 and S. neurona rSnSAG2/3/4. Risk factors associated with these protozoan infections were also investigated. Results: Antibodies against Besnoitia spp., Neospora spp. and Sarcocystis spp. infections were detected in 51 (7.1%), 46 (6.4%) and 20 (2.8%) of 721 equids, respectively. The principal risk factors associated with a higher seroprevalence of Besnoitia spp. were the host species (mule or donkey), the absence of shelter and the absence of a rodent control programme. The presence of rodents was the only risk factor for Neospora spp. infection. Conclusions: This study was the first extensive serosurvey of Besnoitia spp. infection in European equids accomplished by two complementary tests and gives evidence of the presence of specific antibodies in these populations. However, the origin of the infection is still unclear. Further parasite detection and molecular genotyping are needed to identify the causative Besnoitia and Neospora species. Finally, cross-reactions with antibodies directed against other species of Sarcocystis might explain the positive reactions against the S. neurona antigens.SIThis study was supported by several research projects (AGL 2010-20561, CYTED Thematic Network 113RT0469 Protozoovac and by PLATESA S20137ABI-2906). Daniel Gutiérrez Expósito has been financially supported by the Ministry of Science and Innovation (grant no. BES-2011-043753)
    corecore