18 research outputs found

    Quantum Surveying: How Entangled Pairs Act as Measuring Rods on Manifolds of Generalized Coherent States

    Full text link
    Generalized coherent states arise from reference states by the action of locally compact transformation groups and thereby form manifolds on which there is an invariant measure. It is shown that this implies the existence of canonically associated Bell states that serve as measuring rods by relating the metric geometry of the manifold to the observed EPR correlations. It is further shown that these correlations can be accounted for by a hidden variable theory which is non-local but invariant under the stability group of the reference state.Comment: 14 pages, 0 figures, plain te

    How to Probe for Dynamical Structure in the Collapse of Entangled States Using Nuclear Magnetic Resonance

    Get PDF
    The spin state of two magnetically inequivalent protons in contiguous atoms of a molecule becomes entangeled by the indirect spin-spin interaction (j-coupling). The degree of entanglement oscillates at the beat frequency resulting from the splitting of a degeneracy. This beating is manifest in NMR spectroscopy as an envelope of the transverse magnetization and should be visible in the free induction decay signal. The period (approximately 1 sec) is long enough for interference between the linear dynamics and collapse of the wave-function induced by a Stern-Gerlach inhomogeneity to significantly alter the shape of that envelope. Various dynamical collapse theories can be distinguished by their observably different predictions with respect to this alteration. Adverse effects of detuning due to the Stern-Gerlach inhomogeneity can be reduced to an acceptable level by having a sufficiently thin sample or a strong rf field.Comment: 6 pages, 4 figures, PDF, submitted to PR

    Derivation of the Rules of Quantum Mechanics from Information-Theoretic Axioms

    Full text link
    Conventional quantum mechanics with a complex Hilbert space and the Born Rule is derived from five axioms describing properties of probability distributions for the outcome of measurements. Axioms I,II,III are common to quantum mechanics and hidden variable theories. Axiom IV recognizes a phenomenon, first noted by Turing and von Neumann, in which the increase in entropy resulting from a measurement is reduced by a suitable intermediate measurement. This is shown to be impossible for local hidden variable theories. Axiom IV, together with the first three, almost suffice to deduce the conventional rules but allow some exotic, alternatives such as real or quaternionic quantum mechanics. Axiom V recognizes a property of the distribution of outcomes of random measurements on qubits which holds only in the complex Hilbert space model. It is then shown that the five axioms also imply the conventional rules for all dimensions.Comment: 20 pages, 6 figure
    corecore