5 research outputs found

    Improved modelling of SEP event onset within the WSA–Enlil–SEPMOD framework

    No full text
    Multi-spacecraft observations of solar energetic particle (SEP) events not only enable a deeper understanding and development of particle acceleration and transport theories but also provide important constraints for model validation efforts. However, because of computational limitations, a given physics-based SEP model is usually best suited to capture a particular phase of an SEP event, rather than its whole development from onset through decay. For example, magnetohydrodynamic (MHD) models of the heliosphere often incorporate solar transients only at the outer boundary of their so-called coronal domain – usually set at a heliocentric distance of 20–30 R⊙. This means that particle acceleration at coronal mass ejection (CME)-driven shocks is also computed from this boundary onwards, leading to simulated SEP event onsets that can be many hours later than observed, since shock waves can form much lower in the solar corona. In this work, we aim to improve the modelled onset of SEP events by inserting a “fixed source” of particle injection at the outer boundary of the coronal domain of the coupled WSA–Enlil 3D MHD model of the heliosphere. The SEP model that we employ for this effort is Solar Energetic Particle MODel (SEPMOD), a physics-based test-particle code based on a field line tracer and adiabatic invariant conservation. We apply our initial tests and results of SEPMOD’s fixed-source option to the 2021 October 9 SEP event, which was detected at five well-separated locations in the inner heliosphere – Parker Solar Probe, STEREO-A, Solar Orbiter, BepiColombo, and near-Earth spacecraft

    The Effect of the Ambient Solar Wind Medium on a CME-driven Shock and the Associated Gradual Solar Energetic Particle Event

    No full text
    We present simulation results of a gradual solar energetic particle (SEP) event detected on 2021 October 9 by multiple spacecraft, including BepiColombo (Bepi) and near-Earth spacecraft such as the Advanced Composition Explorer (ACE). A peculiarity of this event is that the presence of a high-speed stream (HSS) affected the low-energy ion component (â‰Č5 MeV) of the gradual SEP event at both Bepi and ACE, despite the HSS having only a modest solar wind speed increase. Using the EUHFORIA (European Heliospheric FORecasting Information Asset) magnetohydrodynamic model, we replicate the solar wind during the event and the coronal mass ejection (CME) that generated it. We then combine these results with the energetic particle transport model PARADISE (PArticle Radiation Asset Directed at Interplanetary Space Exploration). We find that the structure of the CME-driven shock was affected by the nonuniform solar wind, especially near the HSS, resulting in a shock wave front with strong variations in its properties such as its compression ratio and obliquity. By scaling the emission of energetic particles from the shock to the solar wind compression at the shock, an excellent match between the PARADISE simulation and in situ measurements of â‰Č5 MeV ions is obtained. Our modeling shows that the intricate intensity variations observed at both ACE and Bepi were influenced by the nonuniform emission of energetic particles from the deformed shock wave and demonstrates the influence of even modest background solar wind structures on the development of SEP events.</p

    Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby

    No full text
    Out of the two Venus flybys that BepiColombo uses as a gravity assist manoeuvre to finally arrive at Mercury, the first took place on 15 October 2020. After passing the bow shock, the spacecraft travelled along the induced magnetotail, crossing it mainly in the YVSO direction. In this paper, the BepiColombo Mercury Planetary Orbiter Magnetometer (MPO-MAG) data are discussed, with support from three other plasma instruments: the Planetary Ion Camera (SERENA-PICAM) of the SERENA suite, the Mercury Electron Analyser (MEA), and the BepiColombo Radiation Monitor (BERM). Behind the bow shock crossing, the magnetic field showed a draping pattern consistent with field lines connected to the interplanetary magnetic field wrapping around the planet. This flyby showed a highly active magnetotail, with e.g. strong flapping motions at a period of ∌7 min. This activity was driven by solar wind conditions. Just before this flyby, Venus's induced magnetosphere was impacted by a stealth coronal mass ejection, of which the trailing side was still interacting with it during the flyby. This flyby is a unique opportunity to study the full length and structure of the induced magnetotail of Venus, indicating that the tail was most likely still present at about 48 Venus radii

    CMEs and SEPs During November‐December 2020: A Challenge for Real‐Time Space Weather Forecasting

    No full text
    Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this work, we aim to analyze the whole inner heliospheric context between two eruptive flares that took place in late 2020, that is, the M4.4 flare of 29 November and the C7.4 flare of 7 December. This period is especially interesting because the STEREO-A spacecraft was located ∌60° east of the Sun–Earth line, giving us the opportunity to test the capabilities of “predictions at 360°” using remote-sensing observations from the Lagrange L1 and L5 points as input. We simulate the CMEs that were ejected during our period of interest and the SEPs accelerated by their shocks using the WSA-Enlil-SEPMOD modeling chain and four sets of input parameters, forming a “mini-ensemble.” We validate our results using in situ observations at six locations, including Earth and Mars. We find that, despite some limitations arising from the models' architecture and assumptions, CMEs and shock-accelerated SEPs can be reasonably studied and forecast in real time at least out to several tens of degrees away from the eruption site using the prediction tools employed here. </p

    Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere

    No full text
    This letter exploits the radial alignment between the Parker Solar Probe and BepiColombo in late 2022 February, when both spacecraft were within Mercury’s orbit. This allows the study of the turbulent evolution, namely, the change in spectral and intermittency properties, of the same plasma parcel during its expansion from 0.11 to 0.33 au, a still unexplored region. The observational analysis of the solar wind turbulent features at the two different evolution stages is complemented by a theoretical description based on the turbulence transport model equations for nearly incompressible magnetohydrodynamics. The results provide strong evidence that the solar wind turbulence already undergoes significant evolution at distances less than 0.3 au from the Sun, which can be satisfactorily explained as due to evolving slab fluctuations. This work represents a step forward in understanding the processes that control the transition from weak to strong turbulence in the solar wind and in properly modeling the heliosphere.</p
    corecore