7,827 research outputs found

    Far infrared absorption by acoustic phonons in titanium dioxide nanopowders

    Full text link
    We report spectral features of far infrared electromagnetic radiation absorption in anatase TiO2 nanopowders which we attribute to absorption by acoustic phonon modes of nanoparticles. The frequency of peak excess absorption above the background level corresponds to the predicted frequency of the dipolar acoustic phonon from continuum elastic theory. The intensity of the absorption cannot be accounted for in a continuum elastic dielectric description of the nanoparticle material. Quantum mechanical scale dependent effects must be considered. The absorption cross section is estimated from a simple mechanical phenomenological model. The results are in plausible agreement with the absorption being due to a sparse layer of charge on the nanoparticle surface.Comment: 8 pages, 5 figures, submitted to Journal of Nanoelectronics and Optoelectronic

    The Structure of the Nuclear Pore Complex (An Update)

    Get PDF
    The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo–electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution

    The Structure of the Nuclear Pore Complex (An Update)

    Get PDF
    The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo–electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution

    Gating and Ionic Currents Reveal How the BKCa Channel's Ca2+ Sensitivity Is Enhanced by its β1 Subunit

    Get PDF
    Large-conductance Ca2+-activated K+ channels (BKCa channels) are regulated by the tissue-specific expression of auxiliary β subunits. β1 is predominately expressed in smooth muscle, where it greatly enhances the BKCa channel's Ca2+ sensitivity, an effect that is required for proper regulation of smooth muscle tone. Here, using gating current recordings, macroscopic ionic current recordings, and unitary ionic current recordings at very low open probabilities, we have investigated the mechanism that underlies this effect. Our results may be summarized as follows. The β1 subunit has little or no effect on the equilibrium constant of the conformational change by which the BKCa channel opens, and it does not affect the gating charge on the channel's voltage sensors, but it does stabilize voltage sensor activation, both when the channel is open and when it is closed, such that voltage sensor activation occurs at more negative voltages with β1 present. Furthermore, β1 stabilizes the active voltage sensor more when the channel is closed than when it is open, and this reduces the factor D by which voltage sensor activation promotes opening by ∼24% (16.8→12.8). The effects of β1 on voltage sensing enhance the BKCa channel's Ca2+ sensitivity by decreasing at most voltages the work that Ca2+ binding must do to open the channel. In addition, however, in order to fully account for the increase in efficacy and apparent Ca2+ affinity brought about by β1 at negative voltages, our studies suggest that β1 also decreases the true Ca2+ affinity of the closed channel, increasing its Ca2+ dissociation constant from ∼3.7 μM to between 4.7 and 7.1 μM, depending on how many binding sites are affected

    Charmed-Baryon Spectroscopy from Lattice QCD with N_f=2+1+1 Flavors

    Full text link
    We present the results of a calculation of the positive-parity ground-state charmed-baryon spectrum using 2+1+1 flavors of dynamical quarks. The calculation uses a relativistic heavy-quark action for the valence charm quark, clover-Wilson fermions for the valence light and strange quarks, and HISQ sea quarks. The spectrum is calculated with a lightest pion mass around 220 MeV, and three lattice spacings (a \approx 0.12 fm, 0.09 fm, and 0.06 fm) are used to extrapolate to the continuum. The light-quark mass extrapolation is performed using heavy-hadron chiral perturbation theory up to O(m_pi^3) and at next-to-leading order in the heavy-quark mass. For the well-measured charmed baryons, our results show consistency with the experimental values. For the controversial J=1/2 Xi_{cc}, we obtain the isospin-averaged value M_{Xi_{cc}}=3595(39)(20)(6) MeV (the three uncertainties are statistics, fitting-window systematic, and systematics from other lattice artifacts, such as lattice scale setting and pion-mass determination), which shows a 1.7 sigma deviation from the experimental value. We predict the yet-to-be-discovered doubly and triply charmed baryons Xi_{cc}^*, Omega_{cc}, Omega_{cc}^* and Omega_{ccc} to have masses 3648(42)(18)(7) MeV, 3679(40)(17)(5) MeV, 3765(43)(17)(5) MeV and 4761(52)(21)(6) MeV, respectively.Comment: 23 pages, 14 figure

    The Observed Building Damage Associated with Fault Movement in 1999 Chi-Chi (Taiwan) Earthquake

    Get PDF
    The Chi-Chi earthquake caused severe damage of many buildings primarily due to surface faulting and ground shaking. It has been reported that about 10,000 buildings collapsed and 8000 buildings suffered varying degrees of damage. The observed damage to buildings resulted from many factors that include ground movement, acceleration, design code, and construction quality. The damage to buildings near the fault was attributed primarily to the ground movement. One observed phenomenon is that the damage in the up-lifted side (east side) of the rupture fault was much more severe than the opposing side (west side) of the fault mainly due to upward movement, surface tension, and surface faulting. This paper will summarize the raw data of observed damage along both sides-of the ruptured fault based upon assessment work performed on site in the Wu-Fong Township area to compare the damage quantitatively on the up-lifted side and the opposing side of the fault. The results of this study will provide insight into the building failures along the fault line

    Structural and Functional Analysis of the C-Terminal Domain of Nup358/RanBP2

    Get PDF
    The nuclear pore complex is the sole mediator of bidirectional transport between the nucleus and cytoplasm. Nup358 is a metazoan-specific nucleoporin that localizes to the cytoplasmic filaments and provides several binding sites for the mobile nucleocytoplasmic transport machinery. Here we present the crystal structure of the C-terminal domain (CTD) of Nup358 at 1.75 Å resolution. The structure reveals that the CTD adopts a cyclophilin-like fold with a non-canonical active-site configuration. We determined biochemically that the CTD possesses weak peptidyl-prolyl isomerase activity and show that the active-site cavity mediates a weak association with the human immunodeficiency virus-1 capsid protein, supporting its role in viral infection. Overall, the surface is evolutionarily conserved, suggesting that the CTD serves as a protein–protein interaction platform. However, we demonstrate that the CTD is dispensable for nuclear envelope localization of Nup358, suggesting that the CTD does not interact with other nucleoporins

    Elimination of the BKCa Channel's High-Affinity Ca2+ Sensitivity

    Get PDF
    We report here a combination of site-directed mutations that eliminate the high-affinity Ca2+ response of the large-conductance Ca2+-activated K+ channel (BKCa), leaving only a low-affinity response blocked by high concentrations of Mg2+. Mutations at two sites are required, the “Ca2+ bowl,” which has been implicated previously in Ca2+ binding, and M513, at the end of the channel's seventh hydrophobic segment. Energetic analyses of mutations at these positions, alone and in combination, argue that the BKCa channel contains three types of Ca2+ binding sites, one of low affinity that is Mg2+ sensitive (as has been suggested previously) and two of higher affinity that have similar binding characteristics and contribute approximately equally to the power of Ca2+ to influence channel opening. Estimates of the binding characteristics of the BKCa channel's high-affinity Ca2+-binding sites are provided
    corecore