128 research outputs found

    Defining the budding yeast chromatin-associated interactome

    Get PDF
    We report here the first large-scale affinity purification and mass spectrometry (AP-MS) study of chromatin-associated protein, in which over 100 different baits involved in chromatin biology were studied by modified chromatin immunopurification (mChIP)-MS. In particular, focus was placed on poorly studied chromatin binding proteins, such as transcription factors, which have been underrepresented in previous AP-MS studies.mChIP-MS analysis of transcription factors identified dense networks of protein associated with chromatin that were composed of specific transcriptional co-activators, information not accessible through the use of classical AP-MS methods.Finally, we demonstrate that novel protein–protein interactions identified in study by mChIP have functional implications exemplified by the detailed study of both the ubiquitination of the proline isomerase Cpr1 and of histone chaperones involved in the regulation of the HTA1-HTB1 promoter.Our work demonstrates the value of targeted interactome studies, in which affinity purification methods are adapted to the needs of specific baits, as is the case for chromatin binding proteins

    High throughput solid phase microextraction: A new alternative for analysis of cellular lipidome?

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jchromb.2016.09.034 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A new SPME method for untargeted lipidomic study of cell line cultures was proposed for the first time. In this study the feasibility to monitor changes in lipid profile after external stimuli was demonstrated and compared to the conventional Bligh & Dyer method. The human hepatocellular carcinoma (HCC) cell line was used as a model. The obtained results provided a list of up-regulated and down-regulated lipids through a comparison between control (non-stimulated) cells versus the group of cells treated with polyunsaturated fatty acid (20:5). Use of the SPME technique yielded a list of 77 lipid species whose concentrations were recognized to be significantly different between control and treated cells, from which 63 lipids were up-regulated in treated cells. In general, the list was comparable to the peer list obtained by the Bligh & Dyer method. However, more diversity of lipid classes and subclasses such as LPC, sphingomyelins, ceramides, and prenol lipids were observed with the application of the SPME method. Method precision for the SPME approach was within the acceptable analytical range (5-18% RSD) for all detected lipids, which was advantageous over solvent extraction applied. The evaluation of ionization efficiency indicated no matrix effect for the SPME technique, while Bligh" & Dyer presented significant ionization suppression for low abundant species such as LysoPC, PG, ceramides, and sphingomyelins, and ionization enhancement for high abundant phospholipids such as PE.Natural Sciences and Engineering Research Council of Canada (NSERC

    DJ-1 interacts with and regulates paraoxonase-2, an enzyme critical for neuronal survival in response to oxidative stress.

    Get PDF
    Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson's disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant activities, at least partly through regulation of PON2

    A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The p38α mitogen-activated protein kinase (MAPK) is a critical mediator of myoblast differentiation, and does so in part through the phosphorylation and regulation of several transcription factors and chromatin remodelling proteins. However, whether p38α is involved in processes other than gene regulation during myogenesis is currently unknown, and why other p38 isoforms cannot compensate for its loss is unclear.</p> <p>Methods</p> <p>To further characterise the involvement of p38α during myoblast differentiation, we developed and applied a simple technique for identifying relevant <it>in vivo </it>kinase substrates and their phosphorylation sites. In addition to identifying substrates for one kinase, the technique can be used <it>in vitro </it>to compare multiple kinases in the same experiment, and we made use of this to study the substrate specificities of the p38α and β isoforms.</p> <p>Results</p> <p>Applying the technique to p38α resulted in the identification of seven <it>in vivo </it>phosphorylation sites on six proteins, four of which are cytoplasmic, in lysate derived from differentiating myoblasts. An <it>in vitro </it>comparison with p38β revealed that substrate specificity does not discriminate these two isoforms, but rather that their distinguishing characteristic appears to be cellular localisation.</p> <p>Conclusion</p> <p>Our results suggest p38α has a novel cytoplasmic role during myogenesis and that its unique cellular localisation may be why p38β and other isoforms cannot compensate for its absence. The substrate-finding approach presented here also provides a necessary tool for studying the hundreds of protein kinases that exist and for uncovering the deeper mechanisms of phosphorylation-dependent cell signalling.</p

    Large-scale mapping of human protein–protein interactions by mass spectrometry

    Get PDF
    Mapping protein–protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein–protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24 540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein–protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations

    Srf1 Is a Novel Regulator of Phospholipase D Activity and Is Essential to Buffer the Toxic Effects of C16:0 Platelet Activating Factor

    Get PDF
    During Alzheimer's Disease, sustained exposure to amyloid-β42 oligomers perturbs metabolism of ether-linked glycerophospholipids defined by a saturated 16 carbon chain at the sn-1 position. The intraneuronal accumulation of 1-O-hexadecyl-2-acetyl-sn-glycerophosphocholine (C16:0 PAF), but not its immediate precursor 1-O-hexadecyl-sn-glycerophosphocholine (C16:0 lyso-PAF), participates in signaling tau hyperphosphorylation and compromises neuronal viability. As C16:0 PAF is a naturally occurring lipid involved in cellular signaling, it is likely that mechanisms exist to protect cells against its toxic effects. Here, we utilized a chemical genomic approach to identify key processes specific for regulating the sensitivity of Saccharomyces cerevisiae to alkyacylglycerophosphocholines elevated in Alzheimer's Disease. We identified ten deletion mutants that were hypersensitive to C16:0 PAF and five deletion mutants that were hypersensitive to C16:0 lyso-PAF. Deletion of YDL133w, a previously uncharacterized gene which we have renamed SRF1 (Spo14 Regulatory Factor 1), resulted in the greatest differential sensitivity to C16:0 PAF over C16:0 lyso-PAF. We demonstrate that Srf1 physically interacts with Spo14, yeast phospholipase D (PLD), and is essential for PLD catalytic activity in mitotic cells. Though C16:0 PAF treatment does not impact hydrolysis of phosphatidylcholine in yeast, C16:0 PAF does promote delocalization of GFP-Spo14 and phosphatidic acid from the cell periphery. Furthermore, we demonstrate that, similar to yeast cells, PLD activity is required to protect mammalian neural cells from C16:0 PAF. Together, these findings implicate PLD as a potential neuroprotective target capable of ameliorating disruptions in lipid metabolism in response to accumulating oligomeric amyloid-β42

    Regulation of Septin Dynamics by the Saccharomyces cerevisiae Lysine Acetyltransferase NuA4

    Get PDF
    In the budding yeast Saccharomyces cerevisiae, the lysine acetyltransferase NuA4 has been linked to a host of cellular processes through the acetylation of histone and non-histone targets. To discover proteins regulated by NuA4-dependent acetylation, we performed genome-wide synthetic dosage lethal screens to identify genes whose overexpression is toxic to non-essential NuA4 deletion mutants. The resulting genetic network identified a novel link between NuA4 and septin proteins, a group of highly conserved GTP-binding proteins that function in cytokinesis. We show that acetyltransferase-deficient NuA4 mutants have defects in septin collar formation resulting in the development of elongated buds through the Swe1-dependent morphogenesis checkpoint. We have discovered multiple sites of acetylation on four of the five yeast mitotic septins, Cdc3, Cdc10, Cdc12 and Shs1, and determined that NuA4 can acetylate three of the four in vitro. In vivo we find that acetylation levels of both Shs1 and Cdc10 are reduced in a catalytically inactive esa1 mutant. Finally, we determine that cells expressing a Shs1 protein with decreased acetylation in vivo have defects in septin localization that are similar to those observed in NuA4 mutants. These findings provide the first evidence that yeast septin proteins are acetylated and that NuA4 impacts septin dynamics

    Peer Reviewed: Prometrics Approaches in Drug Discovery

    No full text
    corecore