23 research outputs found

    Cardiometabolic risk factor clustering in patients with deficient branched‐chain amino acid catabolism: A case‐control study

    Get PDF
    AbstractClassical organic acidemias (OAs) result from defective mitochondrial catabolism of branched‐chain amino acids (BCAAs). Abnormal mitochondrial function relates to oxidative stress, ectopic lipids and insulin resistance (IR). We investigated whether genetically impaired function of mitochondrial BCAA catabolism associates with cardiometabolic risk factors, altered liver and muscle energy metabolism, and IR. In this case‐control study, 31 children and young adults with propionic acidemia (PA), methylmalonic acidemia (MMA) or isovaleric acidemia (IVA) were compared with 30 healthy young humans using comprehensive metabolic phenotyping including in vivo 31P/1H magnetic resonance spectroscopy of liver and skeletal muscle. Among all OAs, patients with PA exhibited abdominal adiposity, IR, fasting hyperglycaemia and hypertriglyceridemia as well as increased liver fat accumulation, despite dietary energy intake within recommendations for age and sex. In contrast, patients with MMA more frequently featured higher energy intake than recommended and had a different phenotype including hepatomegaly and mildly lower skeletal muscle ATP content. In skeletal muscle of patients with PA, slightly lower inorganic phosphate levels were found. However, hepatic ATP and inorganic phosphate concentrations were not different between all OA patients and controls. In patients with IVA, no abnormalities were detected. Impaired BCAA catabolism in PA, but not in MMA or IVA, was associated with a previously unrecognised, metabolic syndrome‐like phenotype with abdominal adiposity potentially resulting from ectopic lipid storage. These findings suggest the need for early cardiometabolic risk factor screening in PA

    Lipidomics—Reshaping the Analysis and Perception of Type 2 Diabetes

    No full text
    As a consequence of a sedentary lifestyle as well as changed nutritional behavior, today’s societies are challenged by the rapid propagation of metabolic disorders. A common feature of diseases, such as obesity and type 2 diabetes (T2D), is the dysregulation of lipid metabolism. Our understanding of the mechanisms underlying these diseases is hampered by the complexity of lipid metabolic pathways on a cellular level. Furthermore, overall lipid homeostasis in higher eukaryotic organisms needs to be maintained by a highly regulated interplay between tissues, such as adipose tissue, liver and muscle. Unraveling pathological mechanisms underlying metabolic disorders therefore requires a diversified approach, integrating basic cellular research with clinical research, ultimately relying on the analytical power of mass spectrometry-based techniques. Here, we discuss recent progress in the development of lipidomics approaches to resolve the pathological mechanisms of metabolic diseases and to identify suitable biomarkers for clinical application. Due to its growing impact worldwide, we focus on T2D to highlight the key role of lipidomics in our current understanding of this disease, discuss remaining questions and suggest future strategies to address them

    A New Targeted Lipidomics Approach Reveals Lipid Droplets in Liver, Muscle and Heart as a Repository for Diacylglycerol and Ceramide Species in Non-Alcoholic Fatty Liver

    No full text
    Obesity is frequently associated with excessive accumulation of lipids in ectopic tissue and presents a major risk factor for type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). Diacylglycerols (DAGs) and ceramides (CERs) were identified as key players in lipid-induced insulin resistance, typical for such diseases. Recent results suggest that the subcellular distribution of these lipids affects their lipotoxic properties. However, the subcellular dynamics of these lipids and the role of lipid droplets (LDs) as a potential storage site is not understood. Here, we developed a liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS)-method for the rapid and simultaneous quantification of DAG and CER species in tissue sample fractions. The assay is characterized by excellent recovery of analytes, limit of quantification, accuracy and precision. We established a fractionation protocol that allows the separation of subcellular tissue fractions. This method was subsequently tested to measure the concentration of DAGs and CERs in subcellular fractions of human muscle and several mouse tissues. In a mouse model of NAFLD, application of this method revealed a prominent role for LDs as repository for lipotoxic DAG and CER species. In conclusion, the new method proved as a valuable tool to analyse the subcellular dynamics of lipotoxins, related to the pathogenesis of insulin resistance, T2D and NAFLD

    An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Get PDF
    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption

    Habitual Flavonoid Intake from Fruit and Vegetables during Adolescence and Serum Lipid Levels in Early Adulthood: A Prospective Analysis

    No full text
    Flavonoids have been implicated in the prevention of cardiovascular diseases (CVD). In a prospective approach, we investigated whether habitual flavonoid intake from fruit, vegetables and juices (FlavFVJ) during adolescence is associated with adult levels of serum lipids, one of the main CVD risk factors. This analysis included healthy participants from the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) study, who had provided a fasting blood sample in adulthood (aged 18–39 years), data on FlavFVJ intake during adolescence (females: 9–15 years, males: 10–16 years)—estimated either from multiple 3-day weighed dietary records (n = 257), or from validated biomarker hippuric acid (uHA) excretion from multiple 24-h urine samples (n = 233)—together with information on relevant covariates. In multivariable linear regression analyses, a higher FlavFVJ intake during adolescence was independently associated with higher serum high-density lipoprotein cholesterol (HDL-C) levels among males (Ptrend = 0.038); however, the inclusion of adult waist circumference attenuated this association (Ptrend = 0.053). FlavFVJ was not associated with triglycerides (TG), total cholesterol (TC) or low-density lipoprotein cholesterol (LDL-C; all Ptrend ≥ 0.1), nor was uHA excretion with any serum lipid outcome among males (all Ptrend ≥ 0.5). Neither FlavFVJ intake nor uHA excretion was associated with serum lipids among women (all Ptrend ≥ 0.1). However, a higher flavonoid intake from fruit and vegetables was independently related to lower LDL-C levels (Ptrend = 0.021), while a higher intake from juices was associated with higher LDL-C levels (Ptrend = 0.016) among females. In conclusion, a higher flavonoid intake from fruit, vegetables and/or juices during adolescence may be linked to cholesterol levels in early adulthood in a sex- and food source-specific manner

    Habitual Fructose Intake Relates to Insulin Sensitivity and Fatty Liver Index in Recent-Onset Type 2 Diabetes Patients and Individuals without Diabetes

    No full text
    The association between the amount and sources of fructose intake with insulin sensitivity and liver fat needs further elucidation. This study aimed at examining whether habitual intake of sucrose plus non-sucrose bound as well as of non-sucrose bound fructose (total fructose, fruit-derived, juice-derived, sugar sweetened beverages (SSB)-derived fructose) is cross-sectionally associated with insulin sensitivity and fatty liver index (FLI). Fructose intake was estimated using the EPIC food frequency questionnaire from 161 participants with type 2 diabetes (T2D) in the ongoing German Diabetes Study (GDS) (age 53 ± 9 years; HbA1c 6.4 ± 0.9%) and 62 individuals without diabetes (CON) (47 ± 14 years; 5.3 ± 0.3%). Peripheral (M-value) and hepatic insulin resistance were assessed by hyperinsulinemic-euglycemic clamps with stable isotope dilution. FLI was calculated based on body mass index, waist circumference, triglyceride and gamma glutamyl transferase concentrations. Multivariable linear regression analyses were performed. A doubling of SSB-derived sucrose plus non-sucrose bound as well as of non-sucrose bound fructose intake was independently associated with a reduction of the M-value by −2.6% (−4.9; −0.2) and −2.7% (−5.2; −0.1) among T2D, respectively, with an increase in the odds of fatty liver by 16% and 17%, respectively among T2D (all p < 0.05). Doubling fruit-derived sucrose plus non-sucrose bound fructose intake independently related to a reduction in the odds of fatty liver by 13% (p = 0.033) among T2D. Moderate SSB-derived fructose intake may detrimentally affect peripheral insulin sensitivity, whereas fruit-derived fructose intake appeared beneficial for liver fat content

    Dietary palmitate and oleate differently modulate insulin sensitivity in human skeletal muscle

    No full text
    Aims/hypothesis!#!Energy-dense nutrition generally induces insulin resistance, but dietary composition may differently affect glucose metabolism. This study investigated initial effects of monounsaturated vs saturated lipid meals on basal and insulin-stimulated myocellular glucose metabolism and insulin signalling.!##!Methods!#!In a randomised crossover study, 16 lean metabolically healthy volunteers received single meals containing safflower oil (SAF), palm oil (PAL) or vehicle (VCL). Whole-body glucose metabolism was assessed from glucose disposal (R!##!Results!#!SAF and PAL raised plasma oleate, but only PAL significantly increased plasma palmitate concentrations. SAF and PAL increased myocellular diacylglycerol and activated protein kinase C (PKC) isoform θ (p < 0.05) but only PAL activated PKCɛ. Moreover, PAL led to increased myocellular ceramides along with stimulated PKCζ translocation (p < 0.05 vs SAF). During clamp, SAF and PAL both decreased insulin-stimulated R!##!Conclusions/interpretation!#!Lipid-induced myocellular insulin resistance is likely more pronounced with palmitate than with oleate and is associated with PKC isoforms activation and inhibitory insulin signalling.!##!Trial registration!#!ClinicalTrials.gov .NCT01736202.!##!Funding!#!German Federal Ministry of Health, Ministry of Culture and Science of the State North Rhine-Westphalia, German Federal Ministry of Education and Research, European Regional Development Fund, German Research Foundation, German Center for Diabetes Research

    Novel Insights into the Adipokinome of Obese and Obese/Diabetic Mouse Models

    No full text
    The group of adipokines comprises hundreds of biological active proteins and peptides released from adipose tissue. Alterations of those complex protein signatures are suggested to play a crucial role in the pathophysiology of multifactorial, metabolic diseases. We hypothesized that also the pathophysiology of type-2-diabetes is linked to the dysregulation of the adipocyte secretome. To test this, we investigated mouse models with monogenic defects in leptin signaling which are susceptible to adipositas (C57BL/6 Cg-Lepob (obob)) or adipositas with diabetes (C57BL/KS Cg-Leprdb (dbdb)) according to their genetic background. At the age of 17 weeks, visceral fat was obtained and primary murine adipocytes were isolated to harvest secretomes. Quantitative proteome analyses (LC-ESI-MS/MS) identified more than 800 potential secreted proteins. The secretome patterns revealed significant differences connected to the pathophysiology of obese mice. Pathway analyses indicated that these differences focus on exosome modelling, but failed to provide more precise specifications. To investigate the relationship of secretome data to insulin sensitivity, we examined the content of diabetogenic lipids, i.e., diacylglycerols (DAGs), identified as key players in lipid-induced insulin resistance. In contrast to obob mice, fat tissue of dbdb mice showed elevated DAG content, especially of DAG species with saturated fatty acid C16:0 and C18:0, while unsaturated fatty acid C16:1 were only changed in obob. Furthermore, DAG signatures of the models specifically correlate to secreted regulated adipokines indicating specific pathways. In conclusion, our data further support the concept that the fat tissue is an endocrine organ that releases bioactive factors corresponding to adipose tissue health status
    corecore