25 research outputs found

    Discovery of Novel 2‑((Pyridin-3-yloxy)methyl)piperazines as α7 Nicotinic Acetylcholine Receptor Modulators for the Treatment of Inflammatory Disorders

    No full text
    Herein we report the design, synthesis, and structure–activity relationships for a new class of α7 nicotinic acetylcholine receptor (nAChR) modulators based on the 2-((pyridin-3-yloxy)­methyl)­piperazine scaffold. The oxazolo­[4,5-<i>b</i>]­pyridine, (<b><i>R</i></b>)-<b>18</b>, and 4-methoxyphenylurea, (<b><i>R</i></b>)-<b>47</b>, were identified as potent and selective modulators of the α7 nAChR with favorable in vitro safety profiles and good oral bioavailability in mouse. Both compounds were shown to significantly inhibit cellular infiltration in a murine model of allergic lung inflammation. Despite the structural and in vivo functional similarities in the compounds, only (<b><i>R</i></b>)-<b>18</b> was shown to be an agonist. Compound (<b><i>R</i></b>)-<b>47</b> demonstrated silent agonist activity. These data support the hypothesis that the anti-inflammatory activity of the α7 nAChR is mediated by a signal transduction pathway that is independent of ion current

    Fosmetpantotenate (RE-024), a phosphopantothenate replacement therapy for pantothenate kinase-associated neurodegeneration: Mechanism of action and efficacy in nonclinical models

    No full text
    <div><p>In cells, phosphorylation of pantothenic acid to generate phosphopantothenic acid by the pantothenate kinase enzymes is the first step in coenzyme A synthesis. Pantothenate kinase 2, the isoform localized in neuronal cell mitochondria, is dysfunctional in patients with pantothenate kinase-associated neurodegeneration. Fosmetpantotenate is a phosphopantothenic acid prodrug in clinical development for treatment of pantothenate kinase-associated neurodegeneration, which aims to replenish phosphopantothenic acid in patients. Fosmetpantotenate restored coenzyme A in short-hairpin RNA pantothenate kinase 2 gene-silenced neuroblastoma cells and was permeable in a blood-brain barrier model. The rate of fosmetpantotenate metabolism in blood is species-dependent. Following up to 700 mg/kg orally, blood exposure to fosmetpantotenate was negligible in rat and mouse, but measurable in monkey. Consistent with the difference in whole blood half-life, fosmetpantotenate dosed orally was found in the brains of the monkey (striatal dialysate) but was absent in mice. Following administration of isotopically labeled-fosmetpantotenate to mice, ~40% of liver coenzyme A (after 500 mg/kg orally) and ~50% of brain coenzyme A (after 125 ÎĽg intrastriatally) originated from isotopically labeled-fosmetpantotenate. Additionally, 10-day dosing of isotopically labeled-fosmetpantotenate, 12.5 ÎĽg, intracerebroventricularly in mice led to ~30% of brain coenzyme A containing the stable isotopic labels. This work supports the hypothesis that fosmetpantotenate acts to replace reduced phosphopantothenic acid in pantothenate kinase 2-deficient tissues.</p></div

    PPA and total PA in mouse and rat blood.

    No full text
    <p>Concentration-versus-time plots of PPA and PA after a single oral administration of fosmetpantotenate at 100, 300, or 700 mg/kg in CD1 mice (N = 4 per time point) or Sprague Dawley rats (N = 3 per time point).</p

    Mean half—Life of fosmetpantotenate and diastereomers after incubation with blood from various species at 37°C for 60 min<sup>a</sup>.

    No full text
    <p>Mean half—Life of fosmetpantotenate and diastereomers after incubation with blood from various species at 37°C for 60 min<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192028#t002fn001" target="_blank"><sup>a</sup></a>.</p

    Effects of 1 ÎĽM fosmetpantotenate TID for 5 consecutive days in shRNA PanK2 knockdown human neuroblastoma cells.

    No full text
    <p>(A) Intracellular CoA concentrations, n = 3. (B) Western blot densitometry values. β-actin was used for normalization. Two experiments in duplicate. Two sided t-test; *p ≤0.05, **p ≤0.01, ***p ≤0.001. Gel images can be found in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192028#pone.0192028.s002" target="_blank">S2 Fig</a>.</p

    Apparent in vitro permeability of diastereomers of fosmetpantotenate, PA, and PPA in a blood—Brain barrier permeability model using co-cultured porcine brain endothelial cells and rat astrocytes<sup>a</sup>.

    No full text
    <p>Apparent in vitro permeability of diastereomers of fosmetpantotenate, PA, and PPA in a blood—Brain barrier permeability model using co-cultured porcine brain endothelial cells and rat astrocytes<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192028#t003fn001" target="_blank"><sup>a</sup></a>.</p

    Fosmetpantotenate, PPA, and total PA in monkey blood.

    No full text
    <p>Concentrations of fosmetpantotenate, PPA, and PA after a single oral administration of fosmetpantotenate in cynomolgus monkeys at 300 mg/kg (N = 2).</p
    corecore