33 research outputs found

    The Total Synthesis of Moenomycin A

    No full text

    Membrane Potential Is Required for MurJ Function

    No full text
    MurJ, the flippase that exports the bacterial cell wall monomer Lipid II to the periplasm, is a target for new antibiotics, which are desperately needed to treat Gram-negative infections. Quantitative methods to monitor MurJ activity are required to characterize inhibitors but are challenging to develop because the lipid-linked substrate is not chemically altered in a flippase reaction. Here we show that MurJ inhibition can be quantified by measuring the accumulation of intracellular Lipid II using a biotin-tagging strategy. We have exploited this assay to show that MurJ is inhibited in the presence of a compound that dissipates the membrane potential. By probing cysteine accessibility we have found that under this condition MurJ relaxes into an inactive, outward-facing conformation reminiscent of that targeted by the peptide antibiotic Lys<sup>M</sup>. We conclude that membrane potential is required for MurJ function in <i>E. coli</i>, and we anticipate that the ability to accumulate this inactive conformation will lead to structures useful for inhibitor design

    A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery.

    No full text
    Cell elongation in rod-shaped bacteria is mediated by the Rod system, a conserved morphogenic complex that spatially controls cell wall assembly by the glycan polymerase RodA and crosslinking enzyme PBP2. Using Escherichia coli as a model system, we identified a PBP2 variant that promotes Rod system function when essential accessory components of the machinery are inactivated. This PBP2 variant hyperactivates cell wall synthesis in vivo and stimulates the activity of RodA-PBP2 complexes in vitro. Cells with the activated synthase also exhibited enhanced polymerization of the actin-like MreB component of the Rod system. Our results define an activation pathway governing Rod system function in which PBP2 conformation plays a central role in stimulating both glycan polymerization by its partner RodA and the formation of cytoskeletal filaments of MreB to orient cell wall assembly. In light of these results, previously isolated mutations that activate cytokinesis suggest that an analogous pathway may also control cell wall synthesis by the division machinery
    corecore