4,667 research outputs found

    Lepton-Flavor Violation with Non-universal Soft Terms

    Get PDF
    We study the lepton-flavor violation processes tau ->mu gamma and mu->e gamma in two different examples of models with non-universal soft breaking terms derived from strings. We show that the predictions are quite different from those of universal scenarios. Non-universal A-terms provide an interesting framework to enhance the supersymmetric contributions to CP violation effects. We observe that in the case of the lepton-flavor violation we study, the non-universality of the scalar masses enhances the branching ratios more significantly than the non-universality of the A-terms. We find that the current experimental bounds on these processes restrict both the parameter space of the models and the texture of the Yukawa couplings which predicts the lepton masses, providing at the same time an interesting experimental test for physics beyond the Standard Model.Comment: 15 pages, 6 figures minor change

    Simulations of the Kelvin-Helmholtz instability driven by coronal mass ejections in the turbulent corona

    Full text link
    Recent high resolution AIA/SDO images show evidence of the development of the Kelvin-Helmholtz instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a-priori expected to differ from the laminar case. To study the evolution of the Kelvin-Helmholtz instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME-corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth-rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that the Kelvin-Helmholtz instability is observed, sets an upper limit to the correlation length of the coronal background turbulence

    Plasmonic edge states: an electrostatic eigenmode description

    Full text link
    We consider periodic arrangements of metal nanostructures and study the effect of periodicity on the localised surface plasmon resonance of the structures within an electrostatic eigenmode approximation. We show that within this limit, the collective surface plasmon resonances of the periodic structures can be expressed in terms of superpositions of the eigenmodes of uncoupled nanostructures that exhibit a standing--wave character delocalised across the entire periodic structure. The formalism derived successfully enables the design and accounts for the observation of plasmonic edge-states in periodic structures

    Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics

    Full text link
    A phase-stabilized femtosecond laser comb is directly used for high-resolution spectroscopy and absolute optical frequency measurements of one- and two-photon transitions in laser-cooled \rb atoms. Absolute atomic transition frequencies, such as the 5S1/2_{1/2} F=2 \ra 7S1/2_{1/2} F"=2 two-photon resonance measured at 788 794 768 921(44) kHz, are determined without \textit{a priori} knowledge about their values. Detailed dynamics of population transfer driven by a sequence of pulses are uncovered and taken into account for the measurement of the 5P states via resonantly enhanced two-photon transitions.Comment: 5 pages, 4 figures, submitte

    NGcGM3 Ganglioside: A Privileged Target for Cancer Vaccines

    Get PDF
    Active specific immunotherapy is a promising field in cancer research. N-glycolyl (NGc) gangliosides, and particularly NGcGM3, have received attention as a privileged target for cancer therapy. Many clinical trials have been performed with the anti-NGc-containing gangliosides anti-idiotype monoclonal antibody racotumomab (formerly known as 1E10) and the conjugated NGcGM3/VSSP vaccine for immunotherapy of melanoma, breast, and lung cancer. The present paper examines the role of NGc-gangliosides in tumor biology as well as the available preclinical and clinical data on these vaccine products. A brief discussion on the relevance of prioritization of cancer antigens in vaccine development is also included
    corecore