66 research outputs found

    Campylobacter ureolyticus: an emerging gastrointestinal pathogen?

    Get PDF
    A total of 7194 faecal samples collected over a 1-year period from patients presenting with diarrhoea were screened for Campylobacter spp. using EntericBios, a multiplex-PCR system. Of 349 Campylobacter-positive samples, 23.8% were shown to be Campylobacter ureolyticus, using a combination of 16S rRNA gene analysis and highly specific primers targeting the HSP60 gene of this organism. This is, to the best of our knowledge, the first report of C. ureolyticus in the faeces of patients presenting with gastroenteritis and may suggest a role for this organism as an emerging enteric pathogen

    Emerging dynamics of human campylobacteriosis in Southern Ireland

    Get PDF
    Infections with Campylobacter spp. pose a significant health burden worldwide. The significance of Campylobacter jejuni/Campylobacter coli infection is well appreciated but the contribution of non-C. jejuni/C. coli spp. to human gastroenteritis is largely unknown. In this study, we employed a two-tiered molecular study on 7194 patient faecal samples received by the Microbiology Department in Cork University Hospital during 2009. The first step, using EntericBio® (Serosep), a multiplex PCR system, detected Campylobacter to the genus level. The second step, utilizing Campylobacter species-specific PCR identified to the species level. A total of 340 samples were confirmed as Campylobacter genus positive, 329 of which were identified to species level with 33 samples containing mixed Campylobacter infections. Campylobacter jejuni, present in 72.4% of samples, was the most common species detected, however, 27.4% of patient samples contained non-C. jejuni/C. coli spp.; Campylobacter fetus (2.4%), Campylobacter upsaliensis (1.2%), Campylobacter hyointestinalis (1.5%), Campylobacter lari (0.6%) and an emerging species, Campylobacter ureolyticus (24.4%). We report a prominent seasonal distribution for campylobacteriosis (Spring with C. ureolyticus (March) preceeding slightly C. jejuni/C. coli (April/May)

    Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    Get PDF
    It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne’s disease

    Simulation of Many-Body Fermi Systems on a Universal Quantum Computer

    Full text link
    We provide fast algorithms for simulating many body Fermi systems on a universal quantum computer. Both first and second quantized descriptions are considered, and the relative computational complexities are determined in each case. In order to accommodate fermions using a first quantized Hamiltonian, an efficient quantum algorithm for anti-symmetrization is given. Finally, a simulation of the Hubbard model is discussed in detail.Comment: Submitted 11/7/96 to Phys. Rev. Lett. 10 pages, 0 figure

    Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation

    Get PDF
    Decoherence-free subspaces (DFSs) shield quantum information from errors induced by the interaction with an uncontrollable environment. Here we study a model of correlated errors forming an Abelian subgroup (stabilizer) of the Pauli group (the group of tensor products of Pauli matrices). Unlike previous studies of DFSs, this type of errors does not involve any spatial symmetry assumptions on the system-environment interaction. We solve the problem of universal, fault-tolerant quantum computation on the associated class of DFSs.Comment: 22 pages, 4 figures. Sequel to quant-ph/990806

    Simulating Ising Spin Glasses on a Quantum Computer

    Full text link
    A linear-time algorithm is presented for the construction of the Gibbs distribution of configurations in the Ising model, on a quantum computer. The algorithm is designed so that each run provides one configuration with a quantum probability equal to the corresponding thermodynamic weight. The partition function is thus approximated efficiently. The algorithm neither suffers from critical slowing down, nor gets stuck in local minima. The algorithm can be A linear-time algorithm is presented for the construction of the Gibbs distribution of configurations in the Ising model, on a quantum computer. The algorithm is designed so that each run provides one configuration with a quantum probability equal to the corresponding thermodynamic weight. The partition function is thus approximated efficiently. The algorithm neither suffers from critical slowing down, nor gets stuck in local minima. The algorithm can be applied in any dimension, to a class of spin-glass Ising models with a finite portion of frustrated plaquettes, diluted Ising models, and models with a magnetic field. applied in any dimension, to a class of spin-glass Ising models with a finite portion of frustrated plaquettes, diluted Ising models, and models with a magnetic field.Comment: 24 pages, 3 epsf figures, replaced with published and significantly revised version. More info available at http://www.fh.huji.ac.il/~dani/ and http://www.fiz.huji.ac.il/staff/acc/faculty/biha
    corecore