3,492 research outputs found
Risk and Cost Assessment of Nitrate Contamination in Domestic Wells
This study combines empirical predictive and economics models to estimate the cost of remediation for domestic wells exceeding suggested treatment thresholds for nitrates. A multiple logistic regression model predicted the probability of well contamination by nitrate, and a life cycle costing methodology was used to estimate costs of nitrate contamination in groundwater in two areas of Nebraska. In south-central Nebraska, 37% of wells were estimated to be at risk of exceeding a threshold of 7.5 mg/L as N, and 17% were at risk of exceeding 10 mg/L as N, the legal limit for human consumption in the United States. In an area in northeastern Nebraska, 82% of wells were at risk of exceeding the 10 mg/L as N legal threshold. Reverse osmosis Point-of-Use (POU) treatment was the option with the lowest costs for a household (3–4 individuals), with an average of 164 total regional cost per household per year depending on the threshold for treatment. Ion exchange and distillation were the next most cost-effective options. At the community level (~10,000 individuals), a reverse osmosis Point-of-Entry (POE) treatment system was the most expensive option for a community due to high initial costs and ongoing operation and maintenance costs, whereas the biological denitrification system was least expensive due to economies of scale. This study demonstrates integrated modeling methods to assess water treatment costs over time associated with groundwater nitrate contamination, including quantification of at-risk wells, and identifies suitable options for treatment systems for rural households and communities based on their cost
Unusually Weak Diffuse Interstellar Bands toward HD 62542
As part of an extensive survey of diffuse interstellar bands (DIBs), we have
obtained optical spectra of the moderately reddened B5V star HD 62542, which is
known to have an unusual UV extinction curve of the type usually identified
with dark clouds. The typically strongest of the commonly catalogued DIBs
covered by the spectra -- those at 5780, 5797, 6270, 6284, and 6614 A -- are
essentially absent in this line of sight, in marked contrast with other lines
of sight of similar reddening. We compare the HD 62542 line of sight with
others exhibiting a range of extinction properties and molecular abundances and
interpret the weakness of the DIBs as an extreme case of deficient DIB
formation in a dense cloud whose more diffuse outer layers have been stripped
away. We comment on the challenges these observations pose for identifying the
carriers of the diffuse bands.Comment: 20 pages, 4 figures; aastex; accepted by Ap
Studies of Diffuse Interstellar Bands. V. Pairwise Correlations of Eight Strong DIBs and Neutral Hydrogen, Molecular Hydrogen, and Color Excess
We establish correlations between equivalent widths of eight diffuse
interstellar bands (DIBs), and examine their correlations with atomic hydrogen,
molecular hydrogen, and EB-V . The DIBs are centered at \lambda\lambda 5780.5,
6204.5, 6283.8, 6196.0, 6613.6, 5705.1, 5797.1, and 5487.7, in decreasing order
of Pearson\^as correlation coefficient with N(H) (here defined as the column
density of neutral hydrogen), ranging from 0.96 to 0.82. We find the equivalent
width of \lambda 5780.5 is better correlated with column densities of H than
with E(B-V) or H2, confirming earlier results based on smaller datasets. We
show the same is true for six of the seven other DIBs presented here. Despite
this similarity, the eight strong DIBs chosen are not well enough correlated
with each other to suggest they come from the same carrier. We further conclude
that these eight DIBs are more likely to be associated with H than with H2, and
hence are not preferentially located in the densest, most UV shielded parts of
interstellar clouds. We suggest they arise from different molecules found in
diffuse H regions with very little H (molecular fraction f<0.01). Of the 133
stars with available data in our study, there are three with significantly
weaker \lambda 5780.5 than our mean H-5780.5 relationship, all of which are in
regions of high radiation fields, as previously noted by Herbig. The
correlations will be useful in deriving interstellar parameters when direct
methods are not available. For instance, with care, the value of N(H) can be
derived from W{\lambda}(5780.5).Comment: Accepted for publication in The Astrophysical Journal; 37 pages, 11
figures, 6 table
Linking goniometer measurements to hyperspectral and multi-sensor imagery for retrieval of beach properties and coastal characterization
In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR\u2711). Focus areas for VCR\u2711 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties and shallow water bathymetry. A priority for VCR\u2711 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR\u2711
Molecular Hydrogen in the FUSE Translucent Lines of Sight: The Full Sample
We report total abundances and related parameters for the full sample of the
FUSE survey of molecular hydrogen in 38 translucent lines of sight. New results
are presented for the "second half" of the survey involving 15 lines of sight
to supplement data for the first 23 lines of sight already published. We assess
the correlations between molecular hydrogen and various extinction parameters
in the full sample, which covers a broader range of conditions than the initial
sample. In particular, we are now able to confirm that many, but not all, lines
of sight with shallow far-UV extinction curves and large values of the
total-to-selective extinction ratio, = / -- characteristic
of larger than average dust grains -- are associated with particularly low
hydrogen molecular fractions (). In the lines of sight with large
, there is in fact a wide range in molecular fractions, despite the
expectation that the larger grains should lead to less H formation.
However, we see specific evidence that the molecular fractions in this
sub-sample are inversely related to the estimated strength of the UV radiation
field and thus the latter factor is more important in this regime. We have
provided an update to previous values of the gas-to-dust ratio, (H)/, based on direct measurements of (H) and (H I).
Although our value is nearly identical to that found with Copernicus data, it
extends the relationship by a factor of 2 in reddening. Finally, as the new
lines of sight generally show low to moderate molecular fractions, we still
find little evidence for single monolithic "translucent clouds" with 1.Comment: 35 pages, 5 tables, 7 figures, accepted for publication in The
Astrophysical Journal Supplements Serie
Probation staff experiences of managing suicidal and self-harming service users
The current study sought to explore the impact of suicidal behaviours on probation staff, in relation to their experiences of working with Probation service users who have carried out suicide, attempted suicide or self-harm. Thirteen in-depth interviews were carried out with probation staff who had direct contact with Probation service users in one Probation area, and had varying degrees of experience of managing suicidal or self-injurious service users. These were analysed using Thematic Analysis and five themes were identified. Findings indicate that staff felt that suicide and self-harm by service users are serious issues which need to be recognised and dealt with in an effective yet compassionate manner. However not attending the Suicide Prevention Training or lack of experience was perceived as restricting their ability to know how to deal with these individuals, and offer support. Furthermore, staff were emotionally affected by these incidents and it is recommend that they should continue to be provided with access to appropriate support services after an incident
Irrigation Water Quality—A Contemporary Perspective
In the race to enhance agricultural productivity, irrigation will become more dependent on poorly characterized and virtually unmonitored sources of water. Increased use of irrigation water has led to impaired water and soil quality in many areas. Historically, soil salinization and reduced crop productivity have been the primary focus of irrigation water quality. Recently, there is increasing evidence for the occurrence of geogenic contaminants in water. The appearance of trace elements and an increase in the use of wastewater has highlighted the vulnerability and complexities of the composition of irrigation water and its role in ensuring proper crop growth, and long-term food quality. Analytical capabilities of measuring vanishingly small concentrations of biologically-active organic contaminants, including steroid hormones, plasticizers, pharmaceuticals, and personal care products, in a variety of irrigation water sources provide the means to evaluate uptake and occurrence in crops but do not resolve questions related to food safety or human health effects. Natural and synthetic nanoparticles are now known to occur in many water sources, potentially altering plant growth and food standard. The rapidly changing quality of irrigation water urgently needs closer attention to understand and predict long-term effects on soils and food crops in an increasingly fresh-water stressed world
A Detailed Assessment of Groundwater Quality in the Kabul Basin, Afghanistan, and Suitability for Future Development
Abstract: Kabul is one of the most populated cities in Afghanistan and providing resources to support this population in an arid climate presents a serious environmental challenge. The current study evaluated the quality of local Kabul Basin groundwater to determine its suitability water for drinking and irrigation purposes now and into the future. This aim was aided through groundwater parameter assessment as well as determination ofWater Quality Index (WQI) developed from 15 observation points near the city. The results of our physicochemical analysis illustrate that groundwater in the majority of areas of the Kabul Basin is not generally suitable for human consumption, and in some cases the concentrations of many contaminants are higher than accepted health standards or water quality benchmarks. The aquifer underlies an arid landscape, and because of this 85% of the samples tested are very hard while just over 13% are classified as hard. Groundwater in the Kabul Basin is typically high in calcium and magnesium and overall classified as a calcium bicarbonate water type. Overall, more than 60% of the analyzed samples had concentrations higher than the World Health Organization (WHO) standard of total dissolved solids (TDS), 10% in total hardness (TH), about 30% in turbidity and more than 90% in magnesium. The results show that based on WQI, without treatment, roughly 5% of groundwater in the studied area is unsuitable for human consumption, while 13.3% is very poor and 40% is poor quality water. Approximately 40% of the assessed groundwater has good quality and could be used as drinking water for future development. Groundwater in some areas shows evidence of pollution and high dissolved solids content, rendering these sources unsuitable for either drinking or irrigation purposes
- …
