1,614 research outputs found

    Extracellular matrix: Forum introduction

    Get PDF

    Emergent Changes in Enterprise Architectures: Framework and Case Study

    Get PDF
    We suggest an emergent change framework for enterprise architecture. Drawing on Leavitt’s Change Model of Organizations, our framework focusses on socio-technical changes in tasks, structures, actors, and technologies. By applying the framework to a medium-sized company from the media industry and drawing on a relatively unique panel data set (2014, 2016, 2018), we demonstrate the amount of emergent changes and confirm three patterns of change. These findings help to advance the study of change and its propagation across different components of an enterprise over time

    The Ballad of the Sad Café

    Get PDF
    Edited by Beatriz Ribeir

    Wunderkind

    Get PDF
    Edited by Beatriz Ribeir

    MUC1: A multifunctional cell surface component of reproductive tissue epithelia

    Get PDF
    MUC1 is a large, transmembrane mucin glycoprotein expressed at the apical surface of a variety of reproductive tract epithelia. Functions attributed to MUC1 include those generally associated with mucins such as lubrication and hydration of cell surfaces as well as protection from microorganisms and degradative enzymes. In addition, MUC1 is an effective inhibitor of both cell-cell and cell-extracellular matrix interactions in both normal and malignant contexts. Moreover, a series of recent studies has shown that the highly conserved cytoplasmic tail of MUC1 interacts specifically with a series of important signal transducing molecules including β-catenin, Grb2 and erbB family members. MUC1 expression in normal epithelia can be quite dynamic, varying in response to steroid hormone or cytokine influences. Following malignant transformation, MUC1 often becomes highly overexpressed, loses its apical restriction, and displays aberrant glycosylation and altered mRNA splice variants. Regulation of MUC1 expression can occur at the transcriptional level. In addition, post-translational regulation of cell surface expression occurs via the activity of cell surface proteases or "sheddases" that release soluble forms of the large ectodomains. This review will briefly summarize studies of MUC1 expression and function in reproductive tissues with particular emphasis on the uterus. In addition, current knowledge of the mechanisms of MUC1 gene regulation, metabolic processing and potential signal transducing functions will be presented

    Transcriptional Activation by NFκB Increases Perlecan/HSPG2 Expression in the Desmoplastic Prostate Tumor Microenvironment

    Get PDF
    Perlecan/HSPG2, a heparan sulfate proteoglycan typically found at tissue borders including those separating epithelia and connective tissue, increases near sites of invasion of primary prostatic tumors as previously shown for other proteins involved in desmoplastic tissue reaction. Studies of prostate cancer cells and stromal cells from both prostate and bone, the major site for prostate cancer metastasis, showed that cancer cells and a subset of stromal cells increased production of perlecan in response to cytokines present in the tumor microenvironment. In silico analysis of the HSPG2 promoter revealed two conserved NFκB binding sites, in addition to the previously reported SMAD3 binding sites. By systematically transfecting cells with a variety of reporter constructs including sequences up to 2.6 kb from the start site of transcription, we identified an active cis element in the distal region of the HSPG2 promoter, and showed that it functions in regulating transcription of HSPG2. Treatment with TNF-α and/or TGFβ1 identified TNF-α as a major cytokine regulator of perlecan production. TNF-α treatment also triggered p65 nuclear translocation and binding to the HSPG2 regulatory region in stromal cells and cancer cells. In addition to stromal induction of perlecan production in the prostate, we identified a matrix-secreting bone marrow stromal cell type that may represent the source for increases in perlecan in the metastatic bone marrow environment. These studies implicate perlecan in cytokine-mediated, innate tissue responses to cancer cell invasion, a process we suggest reflects a modified wound healing tissue response co-opted by prostate cancer cells

    A heparin binding synthetic peptide from human HIP / RPL29 fails to specifically differentiate between anticoagulantly active and inactive species of heparin

    Get PDF
    Despite extensive progress in determining structures within heparin and heparan sulfate (Hp/HS) and the discovery of numerous proteinaceous binding partners for Hp/HS so far; the only detailed characterization of a specific protein-glycosaminoglycan interaction is antithrombin III (ATIII) binding to a Hp pentasaccharide containing a unique 3-O-sulfated glucosamine residue. Previously, it was reported from our laboratories that a 16 amino acid synthetic peptide derived from the C-terminus of human HIP/RPL29 (HIP peptide-1) enriched for ATIII-dependent anticoagulant activity, presumably by specifically binding the ATIII pentasaccharide. Herein, we demonstrate that HIP peptide-1 cannot enrich ATIII-dependent anticoagulant activity from a starting pool of porcine intestinal mucosa Hp through a bio-specific interaction. However, a HIP peptide-1 column can be used to enrich for anticoagulantly active Hp from a diverse pool of glycosaminoglycans known as Hp byproducts by a mechanism of nonspecific charge interactions. Thus, HIP peptide-1 cannot recognize Hp via bio-specific interactions but binds glycosaminoglycans by non-specific charge interactions
    corecore