1,576 research outputs found

    The interplay of sedimentation and crystallization in hard-sphere suspensions

    Get PDF
    We study crystal nucleation under the influence of sedimentation in a model of colloidal hard spheres via Brownian Dynamics simulations. We introduce two external fields acting on the colloidal fluid: a uniform gravitational field (body force), and a surface field imposed by pinning a layer of equilibrium particles (rough wall). We show that crystal nucleation is suppressed in proximity of the wall due to the slowing down of the dynamics, and that the spatial range of this effect is governed by the static length scale of bond orientational order. For distances from the wall larger than this length scale, the nucleation rate is greatly enhanced by the process of sedimentation, since it leads to a higher volume fraction, or a higher degree of supercooling, near the bottom. The nucleation stage is similar to the homogeneous case, with nuclei being on average spherical and having crystalline planes randomly oriented in space. The growth stage is instead greatly affected by the symmetry breaking introduced by the gravitation field, with a slowing down of the attachment rate due to density gradients, which in turn cause nuclei to grow faster laterally. Our findings suggest that the increase of crystal nucleation in higher density regions might be the cause of the large discrepancy in the crystal nucleation rate of hard spheres between experiments and simulations, on noting that the gravitational effects in previous experiments are not negligible.Comment: 16 pages, 15 figures, 2 tables; Soft Matter (2013

    Teacher Unions, the Right to Work, and Fair Share Agreements

    Get PDF
    The status of collective bargaining in public education is in flux. As a result of a movement that began in the early 1960s, more than 30 states now have laws that allow teachers and other public school employees to form unions in order to bargain collectively with their school boards over the terms and conditions of their employment. Further, three jurisdictions prohibit public-sector unions, and in an overlapping tapestry, 23 states—most recently Indiana— have enacted right-to-work laws that bar contracts that require workers to join unions as a condition of employment. Aware that unions derive their operating revenues from member dues, the Supreme Court, consistent with provisions in the National Labor Relations Act, has upheld the constitutionality of “fair share” agreements. “Fair share” or agency fee agreements are premised on the notion that because nonmembers benefit from the activities of unions, they can be required to pay a “fair share” or percentage of union costs associated with the collective-bargaining process in their districts

    Shrinkage Estimators in Online Experiments

    Full text link
    We develop and analyze empirical Bayes Stein-type estimators for use in the estimation of causal effects in large-scale online experiments. While online experiments are generally thought to be distinguished by their large sample size, we focus on the multiplicity of treatment groups. The typical analysis practice is to use simple differences-in-means (perhaps with covariate adjustment) as if all treatment arms were independent. In this work we develop consistent, small bias, shrinkage estimators for this setting. In addition to achieving lower mean squared error these estimators retain important frequentist properties such as coverage under most reasonable scenarios. Modern sequential methods of experimentation and optimization such as multi-armed bandit optimization (where treatment allocations adapt over time to prior responses) benefit from the use of our shrinkage estimators. Exploration under empirical Bayes focuses more efficiently on near-optimal arms, improving the resulting decisions made under uncertainty. We demonstrate these properties by examining seventeen large-scale experiments conducted on Facebook from April to June 2017

    Inhibition of the \u3cem\u3edapE\u3c/em\u3e-Encoded \u3cem\u3eN\u3c/em\u3e-Succinyl- ʟ, ʟ-diaminopimelic Acid Desuccinylase from \u3cem\u3eNeisseria meningitidis\u3c/em\u3e by ʟ-Captopril

    Get PDF
    Binding of the competitive inhibitor ʟ-captopril to the dapE-encoded N-succinyl-ʟ, ʟ-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. ʟ-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 μM and a measured Ki of 1.8 μM and displayed a dose-responsive antibiotic activity toward Escherichia coli. ʟ-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 μM. To examine the nature of the interaction of ʟ-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with ʟ-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of ʟ-captopril to the active site of DapE enzymes as well as important inhibitor–active site residue interaction’s. Such information is critical for the design of new, potent inhibitors of DapE enzymes

    Massively Parallel Sequencing of Human Urinary Exosome/Microvesicle RNA Reveals a Predominance of Non-Coding RNA

    Get PDF
    Intact RNA from exosomes/microvesicles (collectively referred to as microvesicles) has sparked much interest as potential biomarkers for the non-invasive analysis of disease. Here we use the Illumina Genome Analyzer to determine the comprehensive array of nucleic acid reads present in urinary microvesicles. Extraneous nucleic acids were digested using RNase and DNase treatment and the microvesicle inner nucleic acid cargo was analyzed with and without DNase digestion to examine both DNA and RNA sequences contained in microvesicles. Results revealed that a substantial proportion (∼87%) of reads aligned to ribosomal RNA. Of the non-ribosomal RNA sequences, ∼60% aligned to non-coding RNA and repeat sequences including LINE, SINE, satellite repeats, and RNA repeats (tRNA, snRNA, scRNA and srpRNA). The remaining ∼40% of non-ribosomal RNA reads aligned to protein coding genes and splice sites encompassing approximately 13,500 of the known 21,892 protein coding genes of the human genome. Analysis of protein coding genes specific to the renal and genitourinary tract revealed that complete segments of the renal nephron and collecting duct as well as genes indicative of the bladder and prostate could be identified. This study reveals that the entire genitourinary system may be mapped using microvesicle transcript analysis and that the majority of non-ribosomal RNA sequences contained in microvesicles is potentially functional non-coding RNA, which play an emerging role in cell regulation

    Adding flavor to the gravity dual of non-commutative gauge theories

    Full text link
    We study the addition of flavor degrees of freedom to the supergravity dual of the non-commutative deformation of the maximally supersymmetric gauge theories. By considering D7 flavor branes in the probe approximation and studying their fluctuations we extract the spectrum of scalar and vector mesons as a function of the non-commutativity. We find that the spectrum for very large non-commutative parameter is equal to the one in the commutative theory, while for some intermediate values of the non-commutativity some of the modes disappear from the discrete spectrum. We also study the semiclassical dynamics of rotating open strings attached to the D7-brane, which correspond to mesons with large spin. Under the effect of the non-commutativity the open strings get tilted. However, at small(large) distances they display the same Regge-like (Coulombic) behaviour as in the commutative theory. We also consider the addition of D5-flavor branes to the non-commutative deformation of the N=1 supersymmetric Maldacena-Nunez background.Comment: 50 pages, 9 figures, LaTeX; v2: minor improvements, references added; v3: typos correcte

    Functional and Banach Space Stochastic Calculi: Path-Dependent Kolmogorov Equations Associated with the Frame of a Brownian Motion

    Get PDF
    First, we revisit basic theory of functional It\uf4/path-dependent calculus, using the formulation of calculus via regularization. Relations with the corresponding Banach space valued calculus are explored. The second part of the paper is devoted to the study of the Kolmogorov type equation associated with the so called window Brownian motion, called path-dependent heat equation, for which well-posedness at the level of strict solutions is established. Then, a notion of strong approximating solution, called strong-viscosity solution, is introduced which is supposed to be a substitution tool to the viscosity solution. For that kind of solution, we also prove existence and uniqueness
    corecore