269 research outputs found

    Long-lived Quantum Coherence between Macroscopically Distinct States in Superradiance

    Get PDF
    The dephasing influence of a dissipative environment reduces linear superpositions of macroscopically distinct quantum states (sometimes also called Schr\"odinger cat states) usually almost immediately to a statistical mixture. This process is called decoherence. Couplings to the environment with a certain symmetry can lead to slow decoherence. In this Letter we show that the collective coupling of a large number of two-level atoms to an electromagnetic field mode in a cavity that leads to the phenomena of superradiance has such a symmetry, at least approximately. We construct superpositions of macroscopically distinct quantum states decohering only on a classical time scale and propose an experiment in which the extraordinarily slow decoherence should be observable.Comment: 4 pages of revte

    Skillful decadal prediction of German Bight storm activity

    Get PDF
    We evaluate the prediction skill of the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcast system for German Bight storm activity (GBSA) on a multiannual to decadal scale. We define GBSA every year via the most extreme 3-hourly geostrophic wind speeds, which are derived from mean sea-level pressure (MSLP) data. Our 64-member ensemble of annually initialized hindcast simulations spans the time period 1960–2018. For this period, we compare deterministically and probabilistically predicted winter MSLP anomalies and annual GBSA with a lead time of up to 10 years against observations. The model produces poor deterministic predictions of GBSA and winter MSLP anomalies for individual years but fair predictions for longer averaging periods. A similar but smaller skill difference between short and long averaging periods also emerges for probabilistic predictions of high storm activity. At long averaging periods (longer than 5 years), the model is more skillful than persistence- and climatology-based predictions. For short aggregation periods (4 years and less), probabilistic predictions are more skillful than persistence but insignificantly differ from climatological predictions. We therefore conclude that, for the German Bight, probabilistic decadal predictions (based on a large ensemble) of high storm activity are skillful for averaging periods longer than 5 years. Notably, a differentiation between low, moderate, and high storm activity is necessary to expose this skill

    Lifetimes of photosystem I and II proteins in the cyanobacterium Synechocystis sp. PCC 6803

    Get PDF
    AbstractThe half-life times of photosystem I and II proteins were determined using 15N-labeling and mass spectrometry. The half-life times (30–75h for photosystem I components and <1–11h for the large photosystem II proteins) were similar when proteins were isolated from monomeric vs. oligomeric complexes on Blue-Native gels, suggesting that the two forms of both photosystems can interchange on a timescale of <1h or that only one form of each photosystem exists in thylakoids in vivo. The half-life times of proteins associated with either photosystem generally were unaffected by the absence of Small Cab-like proteins

    Comment on ``Creating Metastable Schroedinger Cat States''

    Full text link
    After a careful analysis of the feedback model recently proposed by Slosser and Milburn [Phys. Rev. Lett. 75, 418 (1995)], we are led to the conclusion that---under realistic conditions---their scheme is not significantly more effective in the production of linear superpositions of macroscopically distinguishable quantum states than the usual quantum-optical Kerr effect.Comment: 1 page, RevTeX, 1 eps figure (fig_1.eps), accepted for publication in Physical Review Letters [Phys. Rev. Lett. 77 (9) (1996)

    Fast and accurate circularization of a Rydberg atom

    Full text link
    Preparation of a so-called circular state in a Rydberg atom where the projection of the electron angular momentum takes its maximum value is challenging due to the required amount of angular momentum transfer. Currently available protocols for circular state preparation are either accurate but slow or fast but error-prone. Here, we show how to use quantum optimal control theory to derive pulse shapes that realize fast and accurate circularization of a Rydberg atom. In particular, we present a theoretical proposal for optimized radio-frequency pulses that achieve high fidelity in the shortest possible time, given current experimental limitations on peak amplitudes and spectral bandwidth. We also discuss the fundamental quantum speed limit for circularization of a Rydberg atom, when lifting these constraints.Comment: 10 pages, 6 figure

    Synthesis of chlorophyll b: Localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit

    Get PDF
    BACKGROUND: Assembly of stable light-harvesting complexes (LHCs) in the chloroplast of green algae and plants requires synthesis of chlorophyll (Chl) b, a reaction that involves oxygenation of the 7-methyl group of Chl a to a formyl group. This reaction uses molecular oxygen and is catalyzed by chlorophyllide a oxygenase (CAO). The amino acid sequence of CAO predicts mononuclear iron and Rieske iron-sulfur centers in the protein. The mechanism of synthesis of Chl b and localization of this reaction in the chloroplast are essential steps toward understanding LHC assembly. RESULTS: Fluorescence of a CAO-GFP fusion protein, transiently expressed in young pea leaves, was found at the periphery of mature chloroplasts and on thylakoid membranes by confocal fluorescence microscopy. However, when membranes from partially degreened cells of Chlamydomonas reinhardtii cw15 were resolved on sucrose gradients, full-length CAO was detected by immunoblot analysis only on the chloroplast envelope inner membrane. The electron paramagnetic resonance spectrum of CAO included a resonance at g = 4.3, assigned to the predicted mononuclear iron center. Instead of a spectrum of the predicted Rieske iron-sulfur center, a nearly symmetrical, approximately 100 Gauss peak-to-trough signal was observed at g = 2.057, with a sensitivity to temperature characteristic of an iron-sulfur center. A remarkably stable radical in the protein was revealed by an isotropic, 9 Gauss peak-to-trough signal at g = 2.0042. Fragmentation of the protein after incorporation of (125)I(- )identified a conserved tyrosine residue (Tyr-422 in Chlamydomonas and Tyr-518 in Arabidopsis) as the radical species. The radical was quenched by chlorophyll a, an indication that it may be involved in the enzymatic reaction. CONCLUSION: CAO was found on the chloroplast envelope and thylakoid membranes in mature chloroplasts but only on the envelope inner membrane in dark-grown C. reinhardtii cells. Such localization provides further support for the envelope membranes as the initial site of Chl b synthesis and assembly of LHCs during chloroplast development. Identification of a tyrosine radical in the protein provides insight into the mechanism of Chl b synthesis
    • 

    corecore