6 research outputs found

    Identification for automotive systems

    No full text
    Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles

    Position Regulation of an EGR Valve Using Reset Control With Adaptive Feedforward

    No full text
    International audienceWe propose a hybrid control system performing set-point regulation of an exhaust gas recirculation valve of a Diesel engine. The control technique is based on a first-order reset element (FORE) embedded with an adaptive feedforward action whose aim is to provide asymptotic rejection of disturbances acting at the plant input. The feedforward action is adapted by suitable resetting laws occurring whenever the FORE is reset to zero. We first provide a formal analysis of the effectiveness of the adaptive reset system to guarantee asymptotic set-point regulation, and then, we illustrate how the adaptive feedforward can be parameterized for improved transient performance. We experimentally illustrate the proposed solution on a Diesel engine testbench, which reveals substantial position accuracy improvement during a standard driving cycle, as compared with the production standard solution
    corecore