44 research outputs found

    Phase 1 Study of High-Specific-Activity I-131 MIBG for Metastatic and/or Recurrent Pheochromocytoma or Paraganglioma

    Get PDF
    Context: No therapies are approved for the treatment of metastatic and/or recurrent pheochromocytoma or paraganglioma (PPGL) in the United States. Objective: To determine the maximum tolerated dose (MTD) of high-specific-activity I-131 meta-iodobenzylguanidine (MIBG) for the treatment of metastatic and/or recurrent PPGL. Design: Phase 1, dose-escalating study to determine the MTD via a standard 3 + 3 design, escalating by 37 MBq/kg starting at 222 MBq/kg. Setting: Three centers. Patients: Twenty-one patients were eligible, received study drug, and were evaluable for MTD, response, and toxicity. Intervention: Open-label use of high-specific-activity I-131 MIBG therapy. Main Outcome Measures: Dose-limiting toxicities, adverse events, radiation absorbed dose estimates, radiographic tumor response, biochemical response, and survival. Results: The MTD was determined to be 296 MBq/kg on the basis of two observed dose-limiting toxicities at the next dose level. The highest mean radiation absorbed dose estimates were in the thyroid and lower large intestinal wall (each 1.2 mGy/MBq). Response was evaluated by total administered activity: four patients (19%), all of whom received \u3e18.5 GBq of study drug, had radiographic tumor responses of partial response by Response Evaluation Criteria in Solid Tumors. Best biochemical responses (complete or partial response) for serum chromogranin A and total metanephrines were observed in 80% and 64% of patients, respectively. Overall survival was 85.7% at 1 year and 61.9% at 2 years after treatment. The majority (84%) of adverse events were considered mild or moderate in severity. Conclusions: These findings support further development of high-specific-activity I-131 MIBG for the treatment of metastatic and/or recurrent PPGL at an MTD of 296 MBq/kg

    The role of resting myocardial blood flow and myocardial blood flow reserve as a predictor of major adverse cardiovascular outcomes.

    No full text
    Cardiac perfusion PET is increasingly used to assess ischemia and cardiovascular risk and can also provide quantitative myocardial blood flow (MBF) and flow reserve (MBFR) values. These have been shown to be prognostic biomarkers of adverse outcomes, yet MBF and MBFR quantification remains underutilized in clinical settings. We compare MBFR to traditional cardiovascular risk factors in a large and diverse clinical population (60% African-American, 35.3% Caucasian) to rank its relative contribution to cardiovascular outcomes. Major adverse cardiovascular events (MACE), including unstable angina, non-ST and ST-elevation myocardial infarction, stroke, and death, were assessed for consecutive patients who underwent rest-dipyridamole stress 82Rb PET cardiac imaging from 2012-2015 at the Hospital of the University of Pennsylvania (n = 1283, mean follow-up 2.3 years). Resting MBF (1.1 ± 0.4 ml/min/g) was associated with adverse cardiovascular outcomes. MBFR (2.1 ± 0.8) was independently and inversely associated with MACE. Furthermore, MBFR was more strongly associated with MACE than both traditional cardiovascular risk factors and the presence of perfusion defects in regression analysis. Decision tree analysis identified MBFR as superior to established cardiovascular risk factors in predicting outcomes. Incorporating resting MBF and MBFR in CAD assessment may improve clinical decision making

    The potential of a medium-cost long axial FOV PET system for nuclear medicine departments

    Get PDF
    Purpose: Total body positron emission tomography (TB-PET) has recently been introduced in nuclear medicine departments. There is a large interest in these systems, but for many centers, the high acquisition cost makes it very difficult to justify their current operational budget. Here, we propose medium-cost long axial FOV scanners as an alternative. Methods: Several medium-cost long axial FOV designs are described with their advantages and drawbacks. We describe their potential for higher throughput, more cost-effective scanning, a larger group of indications, and novel research opportunities. The wider spread of TB-PET can also lead to the fast introduction of new tracers (at a low dose), new methodologies, and optimized workflows. Conclusions: A medium-cost TB-PET would be positioned between the current standard PET-CT and the full TB-PET systems in investment but recapitulate most advantages of full TB-PET. These systems could be more easily justified financially in a standard academic or large private nuclear medicine department and still have ample research options

    In vivo visualization of PARP inhibitor pharmacodynamics

    No full text
    BACKGROUND [18F]FluorThanatrace ([18F]FTT) is a radiolabeled poly (adenosine diphosphate-ribose) polymerase inhibitor (PARPi) that enables noninvasive quantification of PARP with potential to serve as a biomarker for patient selection for PARPi therapy. Here we report for the first time to our knowledge noninvasive in vivo visualization of drug-target engagement during PARPi treatment.METHODS Two single-arm, prospective, nonrandomized clinical trials were conducted at the University of Pennsylvania from May 2017 to March 2020. PARP expression in breast cancer was assessed in vivo via [18F]FTT PET before and after initiation of PARPi treatment and in vitro via [125I]KX1 (an analog of [18F]FTT) binding to surgically removed breast cancer.RESULTS Thirteen patients had baseline [18F]FTT PET. Nine of these then had resection and in vitro evaluation of [18F]FTT uptake with an analog and uptake was blocked with PARPi. Of the other 4 patients, 3 had [18F]FTT PET uptake, and all had uptake blocked with treatment with a therapeutic PARPi. Initial in vivo [18F]FTT tumor uptake ranged from undetectable to robust. Following initiation of PARPi therapy, [18F]FTT uptake was not detectable above background in all cases. In vitro tumor treatment with a PARPi resulted in 82% reduction in [125I]KX1 binding.CONCLUSION [18F]FTT noninvasively quantifies PARP-1 expression. Early results indicate ability to visualize PARPi drug-target engagement in vivo and suggest the utility of further study to test [18F]FTT PET as a predictive and pharmacodynamic biomarker.TRIAL REGISTRATION ClinicalTrials.gov identifiers NCT03083288 and NCT03846167.FUNDING Metavivor Translational Research Award, Susan G. Komen for the Cure (CCR 16376362), Department of Defense BC190315, and Abramson Cancer Center Breakthrough Bike Challenge

    NANETS/SNMMI Procedure Standard for Somatostatin Receptor-Based Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE

    No full text
    With the recent approval of 177Lu-DOTATATE for use in gastroenteropancreatic neuroendocrine tumors, access to peptide receptor radionuclide therapy is increasing. Representatives from the North American Neuroendocrine Tumor Society and the Society of Nuclear Medicine and Molecular Imaging collaborated to develop a practical consensus guideline for the administration of 177Lu-DOTATATE. In this paper, we discuss patient screening, maintenance somatostatin analog therapy requirements, treatment location and room preparation, drug administration, and patient release as well as strategies for radiation safety, toxicity monitoring, management of potential complications, and follow-up. Controversies regarding the role of radiation dosimetry are discussed as well. This document is designed to provide practical guidance on how to safely treat patients with this therapy
    corecore