3,406 research outputs found

    THE BUTCHER THE BAKER THE PHARMACEUTICAL MAKER: WHY THE AGRICULTURAL BIOTECH INDUSTRY MAY DIFFER FROM THE GENERAL BIOTECH INDUSTRY

    Get PDF
    This paper explores the apparent anomaly in the patenting strategies found in the agricultural biotechnology industry, when it is compared to the literature's view of the patenting strategies in the general biotechnology industry and in the pharmaceutical industry in particular. By extending an extensive game model of the agriculture biotechnology industry, we show that, like the rest of the biotechnology industry, the integration of the agriculture biotechnology industry into several large private research firms with accompanying government laboratories can be transactions-costs limiting and thus efficient, given the existing institutional structure. A review of the literature respecting the general biotechnology industry reveals an apparent anomaly between the general industry and our findings with respect to the Canadian agricultural biotechnology industry. The literature seems to suggest, as one might expect, that the choice of patenting strategy in the general industry is dependent upon a positive probability of litigation over opportunistic patenting strategies, with the probability of facing litigation being dependent on the type of patenting strategy adopted. In contrast, we found general opportunistic patenting strategies in the Canadian agricultural biotechnology industry, independent of potential litigation. A comparison of the income elasticities of demand for food compared to other biotechnological products, particularly pharmaceuticals, can account for the apparent differences. We briefly assess the policy implications of these observations, particularly examining why the manner in which publicly funded research programs compensate the inventors of the intellectual property that they control may limit the incentives for these programs to control the apparent opportunistic behavior we perceive in the agricultural biotechnology research sector.Research and Development/Tech Change/Emerging Technologies,

    Using EFT to analyze low-energy Compton scattering from protons and light nuclei

    Full text link
    We discuss the application of an effective field theory (EFT) which incorporates the chiral symmetry of QCD to Compton scattering from the proton and deuteron. We describe the chiral EFT analysis of the proton Compton scattering database presented in our recent review (arXiv:1203.6834), which gives: alpha^{(p)}=10.5 +/- 0.5(stat) +/- 0.8(theory); beta^{(p)}= 2.7 +/- 0.5(stat) +/- 0.8(theory), for the electric and magnetic dipole polarizability of the proton. We also summarize the chiral EFT analysis of the world data on coherent Compton scattering from deuterium presented in arXiv:1203.6834. That yields: alpha^{(s)}=10.5 +/- 2.0(stat) +/- 0.8(theory); beta^{(s)}=3.6 +/- 1.0(stat) +/- 0.8(theory).Comment: 5 pages. Invited talk, presented by Phillips at the 11th Conference on the Intersections of Nuclear and Particle Physics (CIPANP 2012), St. Petersburg, FL, May 201

    Nucleon Polarisabilities at and Beyond Physical Pion Masses

    Full text link
    We examine the results of Chiral Effective Field Theory (χ\chiEFT) for the scalar- and spin-dipole polarisabilities of the proton and neutron, both for the physical pion mass and as a function of mπm_\pi. This provides chiral extrapolations for lattice-QCD polarisability computations. We include both the leading and sub-leading effects of the nucleon's pion cloud, as well as the leading ones of the Δ(1232)\Delta(1232) resonance and its pion cloud. The analytic results are complete at N2^2LO in the δ\delta-counting for pion masses close to the physical value, and at leading order for pion masses similar to the Delta-nucleon mass splitting. In order to quantify the truncation error of our predictions and fits as 6868\% degree-of-belief intervals, we use a Bayesian procedure recently adapted to EFT expansions. At the physical point, our predictions for the spin polarisabilities are, within respective errors, in good agreement with alternative extractions using experiments and dispersion-relation theory. At larger pion masses we find that the chiral expansion of all polarisabilities becomes intrinsically unreliable as mπm_\pi approaches about 300  300\;MeV---as has already been seen in other observables. χ\chiEFT also predicts a substantial isospin splitting above the physical point for both the electric and magnetic scalar polarisabilities; and we speculate on the impact this has on the stability of nucleons. Our results agree very well with emerging lattice computations in the realm where χ\chiEFT converges. Curiously, for the central values of some of our predictions, this agreement persists to much higher pion masses. We speculate on whether this might be more than a fortuitous coincidence.Comment: 39 pages LaTeX2e (pdflatex) including 12 figures as 16 .pdf files using includegraphics. Version approved for publication in EPJA includes modifications, clarifications and removal of typographical errors in refereeing and publication proces

    Compton scattering from the proton in an effective field theory with explicit Delta degrees of freedom

    Full text link
    We analyse the proton Compton-scattering differential cross section for photon energies up to 325 MeV using Chiral Effective Field Theory and extract new values for the electric and magnetic polarisabilities of the proton. Our EFT treatment builds in the key physics in two different regimes: photon energies around the pion mass ("low energy") and the higher energies where the Delta(1232) resonance plays a key role. The Compton amplitude is complete at N4L0, O(e^2 delta^4), in the low-energy region, and at NLO, O(e^2 delta^0), in the resonance region. Throughout, the Delta-pole graphs are dressed with pi-N loops and gamma-N-Delta vertex corrections. A statistically consistent database of proton Compton experiments is used to constrain the free parameters in our amplitude: the M1 gamma-N-Delta transition strength b_1 (which is fixed in the resonance region) and the polarisabilities alpha and beta (which are fixed from data below 170 MeV). In order to obtain a reasonable fit we find it necessary to add the spin polarisability gammaM1 as a free parameter, even though it is, strictly speaking, predicted in chiral EFT at the order to which we work. We show that the fit is consistent with the Baldin sum rule, and then use that sum rule to constrain alpha+beta. In this way we obtain alpha=[10.65+/-0.35(stat})+/-0.2(Baldin)+/-0.3(theory)]10^{-4} fm^3, and beta =[3.15-/+0.35(stat)-/+0.2(Baldin)-/+0.3(theory)]10^{-4} fm^3, with chi^2 = 113.2 for 135 degrees of freedom. A detailed rationale for the theoretical uncertainties assigned to this result is provided.Comment: 36 pages, 15 figures Version 2 is shortened for publication; version 1 is more self-contained. Results section unchange

    Comprehensive Study of Observables in Compton Scattering on the Nucleon

    Full text link
    We present an analysis of 1313 observables in Compton scattering on the proton. Cross sections, asymmetries with polarised beam and/or targets, and polarisation-transfer observables are investigated for energies up to the Δ(1232)\Delta(1232) resonance to determine their sensitivity to the proton's dipole scalar and spin polarisabilities. The Chiral Effective Field Theory Compton amplitude we use is complete at N4^4LO, O(e2δ4)\mathcal{O(}e^2\delta^4), for photon energies ωmπ\omega\sim m_\pi, and so has an accuracy of a few per cent there. At photon energies in the resonance region it is complete at NLO, O(e2δ0)\mathcal{O}(e^2\delta^0), and so its accuracy there is about 2020\%. We find that for energies from pion-production threshold to about 250  MeV250\;\mathrm{MeV}, multiple asymmetries have significant sensitivity to presently ill-determined combinations of proton spin polarisabilities. We also argue that the broad outcomes of this analysis will be replicated in complementary theoretical approaches, e.g., dispersion relations. Finally, we show that below the pion-production threshold, 66 observables suffice to reconstruct the Compton amplitude, and above it 1111 are required. Although not necessary for polarisability extractions, this opens the possibility to perform "complete" Compton-scattering experiments. An interactive Mathematica notebook, including results for the neutron, is available from [email protected] .Comment: 75 pages LaTeX2e (pdflatex) including 37 figures as .pdf files using includegraphics; minor corrections. Text-identical to published version but including the Online Supplement. Higher-resolution figures are available at http://home.gwu.edu/~hgrie/Compton/one-N-comprehensive-observables-delta4.v2.0.high-resolution-figures.tg

    Compton Scattering and Nucleon Polarisabilities in Chiral EFT: Update and Future

    Full text link
    We review theoretical progress and prospects for determining the nucleon's static dipole polarisabilities from Compton scattering on few-nucleon targets, including new values; see Refs. [1-5] for details and a more thorough bibliography.Comment: 6 pages LaTeX2e (pdflatex) including 11 figures as .pdf files. First presented by Griesshammer at the 12th Conference on the Intersections of Nuclear and Particle Physics CIPANP2015, 19-24 May 2015, Vail (CO), USA; updated for 22nd International Spin Symposium (SPIN 2016), University of Illinois, Urbana (USA), 26-30 September 2016. Corrected 2 figures, added clarifying tex

    What different variants of chiral EFT predict for the proton Compton differential cross section - and why

    Full text link
    We compare the predictions of different variants of chiral effective field theory for the gamma-p elastic scattering differential cross section. We pay particular attention to the role of pion loops, and the impact that a heavy-baryon expansion has on the behavior of those loops. We also correct erroneous results for these loops that were published in Phys. Rev. C 67, 055202 (2003) [ arXiv:nucl-th/0212024 ].Comment: 4 pages, 2 figure

    Using effective field theory to analyse low-energy Compton scattering data from protons and light nuclei

    Full text link
    Compton scattering provides important insight into the structure of the nucleon. For photons up to about 300 MeV, it is parameterised by six dynamical dipole polarisabilities which characterise the response of the nucleon to a monochromatic photon of fixed frequency and multipolarity. Their zero-energy limit yields the well-known static electric and magnetic dipole polarisabilities \alpha and \beta, and the four dipole spin polarisabilities. Chiral Effective Field Theory (ChiEFT) describes nucleon, deuteron and 3-He Compton scattering, using consistent nuclear currents, rescattering and wave functions. It can thus also be used to extract useful information on the neutron amplitude from Compton scattering on light nuclei. We summarise past work in ChiEFT on all of these reactions and compare with other theoretical approaches. We also discuss all proton experiments up to about 400 MeV, as well as the three modern elastic deuteron data sets, paying particular attention to precision and accuracy of each set. Constraining the Delta(1232) parameters from the resonance region, we then perform new fits to the proton data up to omega(lab)=170 MeV, and a new fit to the deuteron data. After checking in each case that a two-parameter fit is compatible with the respective Baldin sum rules, we obtain, using the sum-rule constraints in a one-parameter fit, \alpha=10.7\pm0.3(stat)\pm0.2(Baldin)\pm0.8(theory), \beta=3.1\mp0.3(stat)\pm0.2(Baldin)\pm0.8(theory), for the proton polarisabilities, and \alpha =10.9\pm 0.9(stat)\pm0.2(Baldin)\pm0.8(theory), \beta =3.6\mp 0.9(stat)\pm0.2(Baldin)\pm0.8(theory), for the isoscalar polarisabilities, each in units of 10^(-4) fm^3. We discuss plans for polarised Compton scattering, their promise as tools to access spin polarisabilities, and other future avenues for theoretical and experimental investigation.Comment: 82 pages LaTeX2e including 24 figures as .eps file embedded with includegraphicx; review for Prog. Part Nucl Phys. Final version identical to published areticle; spelling and grammar correcte

    Compton scattering from the proton: An analysis using the delta expansion up to N3LO

    Full text link
    We report on a chiral effective field theory calculation of Compton scattering from the proton. Our calculation includes pions, nucleons, and the Delta(1232) as explicit degrees of freedom. It uses the "delta expansion", and so implements the hierarchy of scales m_pi < M_Delta-M_N < Lambda_chi. In this expansion the power counting in the vicinity of the Delta peak changes, and resummation of the loop graphs associated with the Delta width is indicated. We have computed the nucleon Compton amplitude in the delta expansion up to N3LO for photon energies of the order of m_pi. This is the first order at which the proton Compton scattering amplitudes receive contributions from contact operators which encode contributions to the spin-independent polarisabilities from states with energies of the order of Lambda_chi. We fit the coefficients of these two operators to the experimental proton Compton data that has been taken in the relevant photon-energy domain, and are in a position to extract new results for the proton polarisabilities alpha and beta.Comment: 6 pages. Proceeding of Sixth International Workshop on Chiral Dynamics, Bern (Switzerland), 6th -- 10th July 2009. To be published in Po

    Predictions for Polarized-Beam/Vector-Polarized-Target Observables in Elastic Compton Scattering on the Deuteron

    Full text link
    Motivated by developments at HIGS at TUNL that include increased photon flux and the ability to circularly polarize photons, we calculate several beam-polarization/target-spin dependent observables for elastic Compton scattering on the deuteron. This is done at energies of the order of the pion mass within the framework of Heavy Baryon Chiral Perturbation Theory. Our calculation is complete to O(Q^3) and at this order there are no free parameters. Consequently, the results reported here are predictions of the theory. We discuss paths that may lead to the extraction of neutron polarizabilities. We find that the photon/beam polarization asymmetry is not a good observable for the purpose of extracting \alpha_n and \beta_n. However, one of the double polarization asymmetries, \Sigma_x, shows appreciable sensitivity to \gamma_{1n} and could be instrumental in pinning down the neutron spin polarizabilities.Comment: 26 pages, 13 figures, revised version to be published in PR
    corecore