13,973 research outputs found

    Trust with Private and Common Property: Effects of Stronger Property Right Entitlements

    Get PDF
    Is mutually beneficial cooperation in trust games more prevalent with private property or common property? Does the strength of property right entitlement affect the answer? Cox, Ostrom, Walker, et al. [1] report little difference between cooperation in private and common property trust games. We assign stronger property right entitlements by requiring subjects to meet a performance quota in a real effort task to earn their endowments. We find that cooperation is lower in common property trust games than in private property trust games, which is an idiosyncratic prediction of revealed altruism theory [2].

    Do all states undergo sudden death of entanglement at finite temperature?

    Full text link
    In this paper we consider the decay of quantum entanglement, quantified by the concurrence, of a pair of two-level systems each of which is interacting with a reservoir at finite temperature T. For a broad class of initially entangled states, we demonstrate that the system always becomes disentangled in a finite time i.e."entanglement sudden death" (ESD) occurs. This class includes all states which previously had been found to have long-lived entanglement in zero temperature reservoirs. Our general result is illustrated by an example.Comment: 4 pages, 3 figure

    Conserved Amino Acids in Each Subunit of the Heteroligomeric tRNA m\u3csup\u3e1\u3c/sup\u3eA58 Mtase from \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e Contribute to tRNA Binding

    Get PDF
    In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of . The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-l-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind , indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present
    • …
    corecore