39 research outputs found

    Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression.

    Get PDF
    Limited clinical benefit has been demonstrated for chimeric antigen receptor (CAR) therapy of solid tumors, but coengineering strategies to generate so-called fourth-generation (4G) CAR-T cells are advancing toward overcoming barriers in the tumor microenvironment (TME) for improved responses. In large part due to technical challenges, there are relatively few preclinical CAR therapy studies in immunocompetent, syngeneic tumor-bearing mice. Here, we describe optimized methods for the efficient retroviral transduction and expansion of murine T lymphocytes of a predominantly central memory T cell (TCM cell) phenotype. We present a bicistronic retroviral vector encoding both a tumor vasculature-targeted CAR and murine interleukin-15 (mIL-15), conferring enhanced effector functions, engraftment, tumor control, and TME reprogramming, including NK cell activation and reduced presence of M2 macrophages. The 4G-CAR-T cells coexpressing mIL-15 were further characterized by up-regulation of the antiapoptotic marker Bcl-2 and lower cell-surface expression of the inhibitory receptor PD-1. Overall, this work introduces robust tools for the development and evaluation of 4G-CAR-T cells in immunocompetent mice, an important step toward the acceleration of effective therapies reaching the clinic

    The Ovarian Cancer Chemokine Landscape Is Conducive to Homing of Vaccine-Primed and CD3/CD28-Costimulated T Cells Prepared for Adoptive Therapy.

    Get PDF
    PURPOSE: Chemokines are implicated in T-cell trafficking. We mapped the chemokine landscape in advanced stage ovarian cancer and characterized the expression of cognate receptors in autologous dendritic cell (DC)-vaccine primed T cells in the context of cell-based immunotherapy. EXPERIMENTAL DESIGN: The expression of all known human chemokines in patients with primary ovarian cancer was analyzed on two independent microarray datasets and validated on tissue microarray. Peripheral blood T cells from five HLA-A2 patients with recurrent ovarian cancer, who previously received autologous tumor DC vaccine, underwent CD3/CD28 costimulation and expansion ex vivo. Tumor-specific T cells were identified by HER2/neu pentamer staining and were evaluated for the expression and functionality of chemokine receptors important for homing to ovarian cancer. RESULTS: The chemokine landscape of ovarian cancer is heterogeneous with high expression of known lymphocyte-recruiting chemokines (CCL2, CCL4, and CCL5) in tumors with intraepithelial T cells, whereas CXCL10, CXCL12, and CXCL16 are expressed quasi-universally, including in tumors lacking tumor-infiltrating T cells. DC-vaccine primed T cells were found to express the cognate receptors for the above chemokines. Ex vivo CD3/CD28 costimulation and expansion of vaccine-primed Tcells upregulated CXCR3 and CXCR4, and enhanced their migration toward universally expressed chemokines in ovarian cancer. CONCLUSIONS: DC-primed tumor-specific T cells are armed with the appropriate receptors to migrate toward universal ovarian cancer chemokines, and these receptors are further upregulated by ex vivo CD3/CD28 costimulation, which render T cells more fit for migrating toward these chemokines. Clin Cancer Res; 21(12); 2840-50. ©2015 AACR

    Sensitive and frequent identification of high avidity neo-epitope specific CD8 + T cells in immunotherapy-naive ovarian cancer.

    Get PDF
    Immunotherapy directed against private tumor neo-antigens derived from non-synonymous somatic mutations is a promising strategy of personalized cancer immunotherapy. However, feasibility in low mutational load tumor types remains unknown. Comprehensive and deep analysis of circulating and tumor-infiltrating lymphocytes (TILs) for neo-epitope specific CD8 <sup>+</sup> T cells has allowed prompt identification of oligoclonal and polyfunctional such cells from most immunotherapy-naive patients with advanced epithelial ovarian cancer studied. Neo-epitope recognition is discordant between circulating T cells and TILs, and is more likely to be found among TILs, which display higher functional avidity and unique TCRs with higher predicted affinity than their blood counterparts. Our results imply that identification of neo-epitope specific CD8 <sup>+</sup> T cells is achievable even in tumors with relatively low number of somatic mutations, and neo-epitope validation in TILs extends opportunities for mutanome-based personalized immunotherapies to such tumors

    Blocking the B7-H4 pathway with novel recombinant antibodies enhances T cell-mediated antitumor responses.

    Get PDF
    B7-H4 inhibits T-cell activation and is widely expressed by solid neoplasms. We have recently demonstrated that the expression of B7-H4 on the surface of malignant cells in vivo is inducible, and that novel anti-B7-H4 recombinant antibodies can reverse the inhibition of tumor-specific T cells. Thus, antibodies targeting the B7-H4 pathways may extend the survival of cancer patients by restoring T cell-mediated antitumor responses

    Tumor Landscapes: β-Catenin Drives Immune Desertification.

    No full text
    Immune checkpoint blockade therapy requires a preestablished activated immune landscape. Understanding tumor-intrinsic mechanisms that lead to T-cell desertification is key to resensitizing them to such therapies. The WNT/β-catenin tumor-intrinsic signaling is emerging as an immune exclusion pathway that holds high promise to counteract resistance to immunotherapy.See related article by Luke et al., p. 3074

    Dangaj et al. Cancer Cell

    No full text
    Supplementary data for Dangaj et al., Cancer Cell: Cooperation between Constitutive and Inducible Chemokines Enables T-cell Engraftment and Immune Attack in Solid Tumor

    Dangaj et al. Cancer Cell

    No full text
    Supplementary data for Dangaj et al., Cancer Cell: Cooperation between Constitutive and Inducible Chemokines Enables T-cell Engraftment and Immune Attack in Solid Tumor

    Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation.

    No full text
    Treatment of high-grade serous ovarian cancer (HGSOC) remains challenging. Although HGSOC can potentially be responsive to immunotherapy owing to endogenous immunity at the molecular or T cell level, immunotherapy for this disease has fallen short of expectations to date. This Review proposes a working classification for HGSOC based on the presence or absence of intraepithelial T cells, and elaborates the putative mechanisms that give rise to such immunophenotypes. These differences might explain the failures of existing immunotherapies, and suggest that rational therapeutic approaches tailored to each immunophenotype might meet with improved success. In T cell-inflamed tumours, treatment could focus on mobilizing pre-existing immunity and strengthening the activation of T cells embedded in intraepithelial tumour myeloid niches. Conversely, in immune-excluded and immune-desert tumours, treatment could focus on restoring inflammation by reprogramming myeloid cells, stromal cells and vascular epithelial cells. Poly(ADP-ribose) polymerase (PARP) inhibitors, low-dose radiotherapy, epigenetic drugs and anti-angiogenesis therapy are among the tools available to restore T cell infiltration in HGSOC tumours and could be implemented in combination with vaccines and redirected T cells

    Ovarian cancer chemokines may not be a significant barrier during whole tumor antigen dendritic-cell vaccine and adoptive T-cell immunotherapy.

    No full text
    Tumor barriers preventing T-cell homing and engraftment should be neutralized during cancer immunotherapy. We recently discovered that ovarian cancer expresses quasi-universal chemokines that can support T-cell homing. Furthermore, T cells elicited by whole tumor antigen dendritic-cell vaccines express cognate chemokine receptors which are upregulated by CD3/CD28 costimulation
    corecore