629 research outputs found

    Demonstration of a Novel HIV-1 Restriction Phenotype from a Human T Cell Line

    Get PDF
    Although retroviruses may invade host cells, a productive infection can be established only after the virus counteracts inhibition from different types of host restriction factors. Fv1, APOBEC3G/F, TRIM5alpha, ZAP, and CD317 inhibit the replication of different retroviruses by interfering with viral uncoating, reverse transcription, nuclear import, RNA stability, and release. In humans, although APOBEC3G/3F and CD317 block HIV-1 replication, their antiviral activities are neutralized by viral proteins Vif and Vpu. So far, no human gene has been found to effectively block wild type HIV-1 replication under natural condition. Thus, identification of such a gene product would be of great medical importance for the development of HIV therapies.In this study, we discovered a new type of host restriction against the wild type HIV-1 from a CD4/CXCR4 double-positive human T cell line. We identified a CEM-derived cell line (CEM.NKR) that is highly resistant to productive HIV-1 infection. Viral production was reduced by at least 1000-fold when compared to the other permissive human T cell lines such as H9, A3.01, and CEM-T4. Importantly, this resistance was evident at extremely high multiplicity of infection. Further analyses demonstrated that HIV-1 could finish the first round of replication in CEM.NKR cells, but the released virions were poorly infectious. These virions could enter the target cells, but failed to initiate reverse transcription. Notably, this restriction phenotype was also present in CEM.NKR and 293T heterokaryons.These results clearly indicate that CEM.NKR cells express a HIV inhibitory gene(s). Further characterization of this novel gene product(s) will reveal a new antiretroviral mechanism that directly inactivates wild type HIV-1

    Altered Dendritic Morphology of Purkinje cells in Dyt1 ΔGAG Knock-In and Purkinje Cell-Specific Dyt1 Conditional Knockout Mice

    Get PDF
    BACKGROUND: DYT1 early-onset generalized dystonia is a neurological movement disorder characterized by involuntary muscle contractions. It is caused by a trinucleotide deletion of a GAG (ΔGAG) in the DYT1 (TOR1A) gene encoding torsinA; the mouse homolog of this gene is Dyt1 (Tor1a). Although structural and functional alterations in the cerebellum have been reported in DYT1 dystonia, neuronal morphology has not been examined in vivo. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined the morphology of the cerebellum in Dyt1 ΔGAG knock-in (KI) mice. Golgi staining of the cerebellum revealed a reduction in the length of primary dendrites and a decrease in the number of spines on the distal dendrites of Purkinje cells. To determine if this phenomenon was cell autonomous and mediated by a loss of torsinA function in Purkinje cells, we created a knockout of the Dyt1 gene only in Purkinje cells of mice. We found the Purkinje-cell specific Dyt1 conditional knockout (Dyt1 pKO) mice have similar alterations in Purkinje cell morphology, with shortened primary dendrites and decreased spines on the distal dendrites. CONCLUSION/SIGNIFICANCE: These results suggest that the torsinA is important for the proper development of the cerebellum and a loss of this function in the Purkinje cells results in an alteration in dendritic structure

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    Mismatch Repair–Independent Increase in Spontaneous Mutagenesis in Yeast Lacking Non-Essential Subunits of DNA Polymerase ε

    Get PDF
    Yeast DNA polymerase ε (Pol ε) is a highly accurate and processive enzyme that participates in nuclear DNA replication of the leading strand template. In addition to a large subunit (Pol2) harboring the polymerase and proofreading exonuclease active sites, Pol ε also has one essential subunit (Dpb2) and two smaller, non-essential subunits (Dpb3 and Dpb4) whose functions are not fully understood. To probe the functions of Dpb3 and Dpb4, here we investigate the consequences of their absence on the biochemical properties of Pol ε in vitro and on genome stability in vivo. The fidelity of DNA synthesis in vitro by purified Pol2/Dpb2, i.e. lacking Dpb3 and Dpb4, is comparable to the four-subunit Pol ε holoenzyme. Nonetheless, deletion of DPB3 and DPB4 elevates spontaneous frameshift and base substitution rates in vivo, to the same extent as the loss of Pol ε proofreading activity in a pol2-4 strain. In contrast to pol2-4, however, the dpb3Δdpb4Δ does not lead to a synergistic increase of mutation rates with defects in DNA mismatch repair. The increased mutation rate in dpb3Δdpb4Δ strains is partly dependent on REV3, as well as the proofreading capacity of Pol δ. Finally, biochemical studies demonstrate that the absence of Dpb3 and Dpb4 destabilizes the interaction between Pol ε and the template DNA during processive DNA synthesis and during processive 3′ to 5′exonucleolytic degradation of DNA. Collectively, these data suggest a model wherein Dpb3 and Dpb4 do not directly influence replication fidelity per se, but rather contribute to normal replication fork progression. In their absence, a defective replisome may more frequently leave gaps on the leading strand that are eventually filled by Pol ζ or Pol δ, in a post-replication process that generates errors not corrected by the DNA mismatch repair system

    APOBEC3G and APOBEC3F Require an Endogenous Cofactor to Block HIV-1 Replication

    Get PDF
    APOBEC3G (A3G)/APOBEC3F (A3F) are two members of APOBEC3 cytidine deaminase subfamily. Although they potently inhibit the replication of vif-deficient HIV-1, this mechanism is still poorly understood. Initially, A3G/A3F were thought to catalyze C-to-U transitions on the minus-strand viral cDNAs during reverse transcription to disrupt the viral life cycle. Recently, it was found more likely that A3G/A3F directly interrupts viral reverse transcription or integration. In addition, A3G/A3F are both found in the high-molecular-mass complex in immortalized cell lines, where they interact with a number of different cellular proteins. However, there has been no evidence to prove that these interactions are required for A3G/A3F function. Here, we studied A3G/A3F-restricted HIV-1 replication in six different human T cell lines by infecting them with wild-type or vif-deficient HIV-1. Interestingly, in a CEM-derived cell line CEM-T4, which expresses high levels of A3G/A3F proteins, the vif-deficient virus replicated as equally well as the wild-type virus, suggesting that these endogenous antiretroviral genes lost anti-HIV activities. It was confirmed that these A3G/A3F genes do not contain any mutation and are functionally normal. Consistently, overexpression of exogenous A3G/A3F in CEM-T4 cells still failed to restore their anti-HIV activities. However, this activity could be restored if CEM-T4 cells were fused to 293T cells to form heterokaryons. These results demonstrate that CEM-T4 cells lack a cellular cofactor, which is critical for A3G/A3F anti-HIV activity. We propose that a further study of this novel factor will provide another strategy for a complete understanding of the A3G/A3F antiretroviral mechanism

    Zebrafish Krüppel-Like Factor 4a Represses Intestinal Cell Proliferation and Promotes Differentiation of Intestinal Cell Lineages

    Get PDF
    BACKGROUND:Mouse krüppel-like factor 4 (Klf4) is a zinc finger-containing transcription factor required for terminal differentiation of goblet cells in the colon. However, studies using either Klf4(-/-) mice or mice with conditionally deleted Klf4 in their gastric epithelia showed different results in the role of Klf4 in epithelial cell proliferation. We used zebrafish as a model organism to gain further understanding of the role of Klf4 in the intestinal cell proliferation and differentiation. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the function of klf4a, a mammalian klf4 homologue by antisense morpholino oligomer knockdown. Zebrafish Klf4a shared high amino acid similarities with human and mouse Klf4. Phylogenetic analysis grouped zebrafish Klf4a together with both human and mouse Klf4 in a branch with high bootstrap value. In zebrafish, we demonstrate that Klf4a represses intestinal cell proliferation based on results of BrdU incorporation, p-Histone 3 immunostaining, and transmission electron microscopy analyses. Decreased PepT1 expression was detected in intestinal bulbs of 80- and 102-hours post fertilization (hpf) klf4a morphants. Significant reduction of alcian blue-stained goblet cell number was identified in intestines of 102- and 120-hpf klf4a morphants. Embryos treated with γ-secretase inhibitor showed increased klf4a expression in the intestine, while decreased klf4a expression and reduction in goblet cell number were observed in embryos injected with Notch intracellular domain (NICD) mRNA. We were able to detect recovery of goblet cell number in 102-hpf embryos that had been co-injected with both klf4a and Notch 1a NICD mRNA. CONCLUSIONS/SIGNIFICANCE:This study provides in vivo evidence showing that zebrafih Klf4a is essential for the repression of intestinal cell proliferation. Zebrafish Klf4a is required for the differentiation of goblet cells and the terminal differentiation of enterocytes. Moreover, the regulation of differentiation of goblet cells in zebrafish intestine by Notch signaling at least partially mediated through Klf4a

    Polymorphisms in the SAA1/2 Gene Are Associated with Carotid Intima Media Thickness in Healthy Han Chinese Subjects: The Cardiovascular Risk Survey

    Get PDF
    BACKGROUND: Serum amyloid A protein (SAA) is not only an inflammatory factor, but also an apolipoprotein that can replace apolipoprotein A1 (apoA1) as the major apolipoprotein of high-density lipoprotein (HDL), which has been linked to atherosclerosis. However, the relationship between genetic polymorphisms of SAA and the intima-media thickness (IMT) of the common carotid artery in healthy subjects remains unclear. We investigated the role of SAA1 and SAA2 gene polymorphisms with IMT in a cohort of healthy subjects participating in the Cardiovascular Risk Survey (CRS) study. METHODOLOGY/PRINCIPAL FINDINGS: Anthropometric and B-mode ultrasound of the carotid IMT were measured in 1914 subjects (849 men; 1065 women) recruited from seven cities in Xinjiang province, (western China). Four SNPs (rs12218, rs2229338, rs1059559, and rs2468844) were genotyped by use of the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The SNP rs12218 was associated with carotid IMT by analyses of a dominate model (P<0.001) and additive model (P = 0.003), and the difference remained significant after multivariate adjustment (P = 0.008, P<0.001, respectively). This relationship was also observed in rs2468844 after multivariate adjustment by recessive model analysis (P = 0.011) but this was not observed in rs2229338 and rs1059559 before and after multivariate adjustment. These associations were not modified by serum HDL concentration. Furthermore, there were significant interactions between rs2468844 and rs12218 (interaction P<0.001) and rs2229338 (interaction P = 0.001) on carotid IMT. CONCLUSION/SIGNIFICANCE: Both rs12218 of the SAA1 gene and rs2468844 of SAA2 gene are associated with carotid IMT in healthy Han Chinese subjects

    Prevalence of Streptococcus pneumoniae in conjunctival flora and association with nasopharyngeal carriage among children in a Vietnamese community.

    Get PDF
    Conjunctival pneumococcal serotypes among members of a community have not been investigated well. We determined the prevalence and association of Streptococcus pneumoniae in the nasopharynx and conjunctiva among children in a community before pneumococcal conjugate vaccine introduction. In October 2016, conjunctival and nasopharyngeal swabs were collected from children (< 24 months old) and nasopharyngeal swabs from mothers in Nha Trang, Vietnam. Quantitative lytA PCR and DNA microarray were performed to detect and serotype S. pneumoniae. The association between S. pneumoniae in the nasopharynx and conjunctiva was evaluated using multivariable logistic regression model. Among 698 children, 62 (8.9%, 95% CI 6.9-11.2%) were positive for S. pneumoniae in the conjunctiva. Non-encapsulated S. pneumoniae were most commonly identified, followed by serotypes 6A, 6B, and 14. Nasopharyngeal and conjunctival detection were positively associated (aOR 47.30, 95% CI 24.07-92.97). Low birth-weight, day-care attendance, and recent eye symptoms were independently associated with S. pneumoniae detection in the conjunctiva (aOR 11.14, 95% CI 3.76-32.98, aOR 2.19, 95% CI 1.45-3.31, and aOR 3.59, 95% CI 2.21-5.84, respectively). Serotypes and genotypes in the conjunctiva and nasopharynx matched in 87% of the children. Three mothers' nasopharyngeal pneumococcal samples had matched serotype and genotype with their child's in the conjunctiva and nasopharynx. S. pneumoniae presence in nasopharynx and conjunctiva were strongly associated. The high concordance of serotypes suggests nasopharyngeal carriage may be a source of transmission to the conjunctiva

    Direct targets of Klf5 transcription factor contribute to the maintenance of mouse embryonic stem cell undifferentiated state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A growing body of evidence has shown that Krüppel-like transcription factors play a crucial role in maintaining embryonic stem cell (ESC) pluripotency and in governing ESC fate decisions. Krüppel-like factor 5 (Klf5) appears to play a critical role in these processes, but detailed knowledge of the molecular mechanisms of this function is still not completely addressed.</p> <p>Results</p> <p>By combining genome-wide chromatin immunoprecipitation and microarray analysis, we have identified 161 putative primary targets of Klf5 in ESCs. We address three main points: (1) the relevance of the pathways governed by Klf5, demonstrating that suppression or constitutive expression of single Klf5 targets robustly affect the ESC undifferentiated phenotype; (2) the specificity of Klf5 compared to factors belonging to the same family, demonstrating that many Klf5 targets are not regulated by Klf2 and Klf4; and (3) the specificity of Klf5 function in ESCs, demonstrated by the significant differences between Klf5 targets in ESCs compared to adult cells, such as keratinocytes.</p> <p>Conclusions</p> <p>Taken together, these results, through the definition of a detailed list of Klf5 transcriptional targets in mouse ESCs, support the important and specific functional role of Klf5 in the maintenance of the undifferentiated ESC phenotype.</p> <p>See: <url>http://www.biomedcental.com/1741-7007/8/125</url></p
    corecore