170 research outputs found

    Factors Affecting Business Angels Investment in Vietnam

    Get PDF
    The paper aims at investigating and comparing the factors determining investment decisions by business angels (BAs) from the viewpoints of BAs and startups in Vietnam based on a framework synthesized from a literature review and primary data from in-depth interviews conducted with 8 startups and 15 angel investors. The results show that the startups’ founder, working team, financial issues, product and market, and strategy related to exit and the roles of BAs are startup-related factors determining BAs’ investment in Vietnam. For BA-related factors, the BAs’ experience, investment objectives and preferences, and culture are key determinants. The novelty of the paper is to find out the gaps between the perspectives of BAs and startups, and the difference between Vietnamese and foreign BAs’ viewpoints. The finding is that BAs, more strictly than startups, assess their business plan, financial state, product, market, and targeted consumers. Startups neglect the exit strategy and role of BAs in invested startups. In addition, foreign and domestic BAs have different opinions on startups’ market scale, and expectation of profits and BAs’ roles in startups. The paper ends by providing some implications for Vietnamese startups to attract more angel investment, focusing on improving the quality of human resources, developing a profitable, honest, and realistic business plan, and setting up a long-run vision towards the global market. Doi: 10.28991/ESJ-2023-07-02-07 Full Text: PD

    The study of convex-dual-layer remote phosphor geometry in upgrading WLEDs color rendering index

    Get PDF
    The white-light light-emitting diode (LED) is a semiconductor light source that usually has one chip and one phosphor layer. Because of that simple structure, the color rendering index (CRI) is really poor. Therefore, structure with double layer of phosphor and multiple chips has been studied with the phosphorus proportions and densities in the silicone are constantly changed to find the best option to improve optical properties. In research, we use red phosphor Ca5B2SiO10:Eu3+ layer to place above the yellow phosphor one, and both of them have a convex design. Then, the experiments and measurements are carried out to figure out the effects of this red phosphor as well as the convex-double-layer remote phosphor design on the LED’s performances. The measured results reveal that the light output is enhanced significantly when using convex-dual-layer structure instead of the single-layer design. Additionally, the Ca5B2SiO10:Eu3+ concentration benefits CRI and CQS at around 6600 K and 7700 K correlated color temperature (CCT). Yet, the lumen output shows a slight decline as this red phosphor concentration surpass 26% wt. Through the experiments, it is found that a double layer of chip and double phosphorus is the best structure which could support the quality of CRI and luminous flux

    Developing Formulas for Quick Calculation of Polyhedron Volume in Spatial Geometry: Application to Vietnam

    Get PDF
    In the age of globalization, an effective leadership skill is the ability for quick calculation of work-related problems. From an economic perspective, fast computation often provides a competitive advantage in business, where speed, efficiency and accuracy are required. Quick calculation techniques are a central problem in modern mathematics because it shortens the time for solving technical problems. The purpose of the paper is to provide an explanation that will lead to a quick solution to a volume problem. Specifically, some convenient formulas are provided for quick calculation of the volume of the common polyhedron, together with a number of multiple-choice questions with IATA software to practice. Based on the evaluation results, reliable multiple-choice questions are used for an empirical study in Can Tho City, Vietnam on the effectiveness of the formulas for quick calculation of the polyhedron volume in spatial geometry. Statistical analysis shows that quick formulas help students to complete lessons at a higher rate, thereby contributing to improvements in the effectiveness of teaching geometry, especially the volume of the Polyhedron

    Roles of Gate-Oxide Thickness Reduction in Scaling Bulk and Thin-Body Tunnel Field-Effect Transistors

    Get PDF
    Tunnel field-effect transistor (TFET) has recently been considered as a promising candidate for low-power integrated circuits. In this paper, we present an adequate examination on the roles of gate-oxide thickness reduction in scaling bulk and thin-body TFETs. It is shown that the short-channel performance of TFETs has to be characterized by both the off-current and the subthreshold swing because their physical origins are completely different. The reduction of gate-oxide thickness plays an important role in maintaining low subthreshold swing whereas it shows a less role in suppressing off-state leakage in short-channel TFETs with bulk and thin-body structures. When scaling the gate-oxide thickness, the short-channel effect is suppressed more effectively in thin-body TFETs than in bulk devices. Clearly understanding the roles of scaling gate-oxide thickness is necessary in designing advanced scaled TFET devices

    IMPROVEMENT OF CO2 PURIFYING SYSTEM BY PHOTOCATALYST FOR APPLICATION IN MICROALGAE CULTURE TECHNOLOGY

    Get PDF
    By reactive grinding method Vanadium-doped rutile TiO2 nanoparticle material was obtained with an average particle size of 20‐40nm, the Brunauer–Emmet–Teller (BET) specific surface area about 20 m2g−1 and it absorbed strongly in the UV region and increased at the visible wavelength of 430 – 570 nm. This study focused on the improvement of exhaust gas treatment from coal-fired flue gas of the traditional adsorption-catalysis system (Modular System for Treating Flue Gas - MSTFG) by using the V2O5/TiO2 Rutile as photocatalyst. The results showed that integrating both catalytic systems mentioned above increased the gas treatment efficiency: CO from 77 % to over 98 %, NOx from 50 % to 93 %, SO2 was absent as opposed to the input gas component. Also it showed that V2O5/TiO2 Rutile integrated with MSTFG has got high efficiency of CO treatment, also secured the high obtained CO2 concentration as a valuable carbon source for microagal mass culture as well as saving energy and simplifying devices

    The role of nutritional risk evaluation in predicting adverse outcomes among patients with severe COVID-19 in Vietnam

    Get PDF
    IntroductionAs sufficient nutrition helps alleviate catabolic stress and modulate the systemic inflammatory response of the body, it plays an indispensable role in the good prognosis of critically ill patients. Thus, this study aimed to investigate the malnutrition of patients with severe COVID-19 and its association with adverse treatment outcomes.MethodsWe conducted a retrospective cross-sectional study in two provincial hospitals in Hanoi from February to April 2022. Participants were patients with severe COVID-19 admitted to the Intensive Care Unit (ICU). Malnutrition risk were evaluated by Nutritional Risk Screening-2002 (NRS), Global Leadership Initiative on Malnutrition (GLIM), Prognostic Nutritional Index (PNI), and the adverse prognosis was assessed by Acute Physiology and Chronic Health Evaluation II (APACHE II). The multivariate receiver-operating characteristic (ROC) curve was applied to estimate the predictive ability of those criteria regarding worse treatment results.ResultsThe percentages of malnutrition measured by NRS, GLIM, PNI, and BMI were 62.6, 51.5, 42.9, and 16.6%, respectively. Patients with more severe malnutrition assessed by GLIM, PNI, and having above target fasting blood glucose (FBG) (≥10.0 mmol/L) were more likely to have higher APACHE scores. PNI had a better diagnostic performance than NRS and BMI (AUC = 0.84, 0.81, and 0.82, respectively). In addition, FBG revealed a good prognostic implication (AUC = 0.84).ConclusionA relatively high percentage of patients experienced moderate and severe malnutrition regardless of screening tools. Individuals at higher risk of malnutrition and high FBG were predicted to have more adverse treatment outcomes. It is recommended that nutritional screening should be conducted regularly, and personalizing nutritional care strategies is necessary to meet patients’ nutrient demands and prevent other nutrition-related complications

    Phytoremediation of heavy metal polluted soil and water in Vietnam

    Get PDF
    Phytoremediation has been intensively studied during the past decade due to its cost-effectiveness and environmental harmonies. Most of the studies on treatment of heavy metal pollution in soil and water by plant species have been done in developed countries but are limited in Vietnam. In this study, we presented some research results of phytoremediation of polluted soils and water with heavy metals that were done by Institute of Environmental Technology for several last years. For treatment of heavy metal pollution in the water, some plants have great ability to accumulate heavy metals such as Vetiveria zizanioides, Phragmites australis, Eichhornia crassipes, Pistia stratiotes, Ipomoea aquatica, Nypa fruticans and Enhydra fluctuans. The heavy metal uptake into shoots and roots of 33 indigenous plant species in Thai Nguyen province was also determined. Two species of the plants investigated, Pteris vittata L. and Pityrogramma calomelanos L. were As hyperaccumulators, containing more than 0.1% As in their shoots while Eleusine indica, Cynodon dactylon, Cyperus rotundus and Equisetum ramosissimum accumulated very high Pb (0.15-0.65%) and Zn (0.22-1.56%) concentrations in their roots. Some experiments to clarify the potential of several plants as good candidates for phytoremediation of polluted soil by heavy metals were carried out in our institute.Phương pháp sử dụng thực vật để xử lý ô nhiễm đã được nghiên cứu nhiều trong thập kỷ qua do chi phí thấp và thân thiện với môi trường. Hầu hết các nghiên cứu về xử lý ô nhiễm kim loại nặng trong đất và nước bằng thực vật đã được thực hiện ở các nước phát triển nhưng ít có tại Việt Nam. Trong nghiên cứu này, chúng tôi giới thiệu một số kết quả dùng công nghệ thực vật để xử lý ô nhiễm kim loại nặng trong đất và nước tại Viện Công nghệ môi trường trong những năm gần đây. Dối với xử lý ô nhiễm kim loại nặng trong nước, một số thực vật có khả năng tích lũy tốt kim loại nặng như Vetiveria zizanioides, Phragmites australis, Eichhornia crassipes, Pistia stratiotes, Ipomoea aquatica, Nypa fruticans và Enhydra fluctuans. Sự hấp thụ và tích lũy kim loại nặng trong phần trên mặt đất và rễ của 33 loài thực vật bản địa tại Thái Nguyên cũng đã được xác định. Hai loài thực vật khảo sát là Pteris vittata và Pityrogramma calomelanos là những loài siêu tích lũy As, chứa hơn 0,1% As trong phần trên mặt đất của cây. leusine indica, Cynodon dactylon, Cyperus rotundus và Equisetum ramosissimum tích lũy Pb (0,15-0,65%) và Zn (0,22-1,56%) rất cao trong rễ. Một số thí nghiệm đánh giá tiềm năng của một số thực vật là đối tượng tốt cho xử lý ô nhiễm kim loại nặng trong đất đã được tiến hành trong phòng thí nghiệm của Viện Công nghệ môi trường

    Assessment of growth and fermentation of some yeasts on soybean residue hydrolysate

    Get PDF
    This study explored the growth and fermentation capabilities of four distinct yeast strains, including Saccharomyces cerevisiae var. boulardii CNCM I-745, S. cerevisiae 7012, S. cerevisiae 7028, and S. cerevisiae var. diastaticus BE-134, with the aim of identifying the most suitable strain for the production of a fermented beverage from soybean residue hydrolysate (SRH). The results were as follows: S. cerevisiae 7012 exhibited the most efficient fermentation, with residual sugar content of 2.16 g/100 ml, an ethanol concentration of 1.39% v/v, and a favourable aroma, receiving a sensory score of 4.3/5 points. Within this sensory profile, the aromatic compound 2-phenylethanol was found to be the predominant component. Additionally, S. cerevisiae var. boulardii CNCM I-745 demonstrated superior biomass production ability, achieving a cell density of 7.71 log CFU/ml after 48 hours of fermentation solution also showed the highest antioxidant activity, equivalent to 1.63 mg of ascorbic acid per 100 ml. Consequently, these two yeast strains were selected for combined use in fermentation to leverage the probiotic characteristics of S. cerevisiae var. boulardii CNCM I-745 and the flavouring capacity of S. cerevisiae 7012 in creating fermented beverages from SRH

    Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-β-mannosidases (1,4-β-<smcaps>D</smcaps>-mannanases) catalyze the random hydrolysis of β-1,4-mannosidic linkages in the main chain of β-mannans. Biodegradation of β-mannans by the action of thermostable mannan endo-1,4-β-mannosidase offers significant technical advantages in biotechnological industrial applications, <it>i.e</it>. delignification of kraft pulps or the pretreatment of lignocellulosic biomass rich in mannan for the production of second generation biofuels, as well as for applications in oil and gas well stimulation, extraction of vegetable oils and coffee beans, and the production of value-added products such as prebiotic manno-oligosaccharides (MOS).</p> <p>Results</p> <p>A gene encoding mannan endo-1,4-β-mannosidase or 1,4-β-<smcaps>D</smcaps>-mannan mannanohydrolase (E.C. 3.2.1.78), commonly termed β-mannanase, from <it>Aspergillus niger </it>BK01, which belongs to glycosyl hydrolase family 5 (GH5), was cloned and successfully expressed heterologously (up to 243 μg of active recombinant protein per mL) in <it>Pichia pastoris</it>. The enzyme was secreted by <it>P. pastoris </it>and could be collected from the culture supernatant. The purified enzyme appeared glycosylated as a single band on SDS-PAGE with a molecular mass of approximately 53 kDa. The recombinant β-mannanase is highly thermostable with a half-life time of approximately 56 h at 70°C and pH 4.0. The optimal temperature (10-min assay) and pH value for activity are 80°C and pH 4.5, respectively. The enzyme is not only active towards structurally different mannans but also exhibits low activity towards birchwood xylan. Apparent K<sub>m </sub>values of the enzyme for konjac glucomannan (low viscosity), locust bean gum galactomannan, carob galactomannan (low viscosity), and 1,4-β-<smcaps>D</smcaps>-mannan (from carob) are 0.6 mg mL<sup>-1</sup>, 2.0 mg mL<sup>-1</sup>, 2.2 mg mL<sup>-1 </sup>and 1.5 mg mL<sup>-1</sup>, respectively, while the k<sub>cat </sub>values for these substrates are 215 s<sup>-1</sup>, 330 s<sup>-1</sup>, 292 s<sup>-1 </sup>and 148 s<sup>-1</sup>, respectively. Judged from the specificity constants k<sub>cat</sub>/K<sub>m</sub>, glucomannan is the preferred substrate of the <it>A. niger</it> β -mannanase. Analysis by thin layer chromatography showed that the main product from enzymatic hydrolysis of locust bean gum is mannobiose, with only low amounts of mannotriose and higher manno-oligosaccharides formed.</p> <p>Conclusion</p> <p>This study is the first report on the cloning and expression of a thermostable mannan endo-1,4-β-mannosidase from <it>A. niger </it>in <it>Pichia pastoris</it>. The efficient expression and ease of purification will significantly decrease the production costs of this enzyme. Taking advantage of its acidic pH optimum and high thermostability, this recombinant β-mannanase will be valuable in various biotechnological applications.</p
    corecore