654 research outputs found

    Highly accurate step counting at variouswalking states using low-cost inertial measurement unit support indoor positioning system

    Full text link
    Β© 2018 by the authors. Licensee MDPI, Basel, Switzerland. Accurate step counting is essential for indoor positioning, health monitoring systems, and other indoor positioning services. There are several publications and commercial applications in step counting. Nevertheless, over-counting, under-counting, and false walking problems are still encountered in these methods. In this paper, we propose to develop a highly accurate step counting method to solve these limitations by proposing four features: Minimal peak distance, minimal peak prominence, dynamic thresholding, and vibration elimination, and these features are adaptive with the user’s states. Our proposed features are combined with periodicity and similarity features to solve false walking problem. The proposed method shows a significant improvement of 99.42% and 96.47% of the average of accuracy in free walking and false walking problems, respectively, on our datasets. Furthermore, our proposed method also achieves the average accuracy of 97.04% on public datasets and better accuracy in comparison with three commercial step counting applications: Pedometer and Weight Loss Coach installed on Lenovo P780, Health apps in iPhone 5s (iOS 10.3.3), and S-health in Samsung Galaxy S5 (Android 6.01)

    Effect of ciprofloxacin dosages on the performance of sponge membrane bioreactor treating hospital wastewater

    Full text link
    Β© 2018 Elsevier Ltd This study aimed to evaluate treatment performance and membrane fouling of a lab-scale Sponge-MBR under the added ciprofloxacin (CIP) dosages (20; 50; 100 and 200 Β΅g Lβˆ’1) treating hospital wastewater. The results showed that Sponge-MBR exhibited effective removal of COD (94–98%) during the operation period despite increment of CIP concentrations from 20 to 200 Β΅g Lβˆ’1. The applied CIP dosage of 200 Β΅g Lβˆ’1 caused an inhibition of microorganisms in sponges, i.e. significant reduction of the attached biomass and a decrease in the size of suspended flocs. Moreover, this led to deteriorating the denitrification rate to 3–12% compared to 35% at the other lower CIP dosages. Importantly, Sponge-MBR reinforced the stability of CIP removal at various added CIP dosages (permeate of below 13 Β΅g Lβˆ’1). Additionally, the fouling rate at CIP dosage of 200 Β΅g Lβˆ’1 was 30.6 times lower compared to the control condition (no added CIP dosage)

    High rate nitrogen removal by ANAMMOX internal circulation reactor (IC) for old landfill leachate treatment

    Full text link
    Β© 2017 Elsevier Ltd This study aimed to evaluate the performance of a high rate nitrogen removal lab-scale ANAMMOX reactor, namely Internal Circulation (IC) reactor, for old landfill leachate treatment. The reactor was operated with pre-treated leachate from a pilot Partial Nitritation Reactor (PNR) using a high nitrogen loading rate ranging from 2 to 10 kg N mβˆ’3 dβˆ’1. High rate removal of nitrogen (9.52 Β± 1.11 kg N mβˆ’3 dβˆ’1) was observed at an influent nitrogen concentration of 1500 mg N Lβˆ’1. The specific ANAMMOX activity was found to be 0.598 Β± 0.026 gN2-N gVSSβˆ’1 dβˆ’1. Analysis of ANAMMOX granules suggested that 0.5–1.0 mm size granular sludge was the dominant group. The results of DNA analysis revealed that Candidatus Kueneniastuttgartiensis was the dominant species (37.45%) in the IC reactor, whereas other species like uncultured Bacteroidetes bacterium only constituted 5.37% in the system, but they were still responsible for removing recalcitrant organic matter

    Severely Impaired Learning and Altered Neuronal Morphology in Mice Lacking NMDA Receptors in Medium Spiny Neurons

    Get PDF
    The striatum is composed predominantly of medium spiny neurons (MSNs) that integrate excitatory, glutamatergic inputs from the cortex and thalamus, and modulatory dopaminergic inputs from the ventral midbrain to influence behavior. Glutamatergic activation of AMPA, NMDA, and metabotropic receptors on MSNs is important for striatal development and function, but the roles of each of these receptor classes remain incompletely understood. Signaling through NMDA-type glutamate receptors (NMDARs) in the striatum has been implicated in various motor and appetitive learning paradigms. In addition, signaling through NMDARs influences neuronal morphology, which could underlie their role in mediating learned behaviors. To study the role of NMDARs on MSNs in learning and in morphological development, we generated mice lacking the essential NR1 subunit, encoded by the Grin1 gene, selectively in MSNs. Although these knockout mice appear normal and display normal 24-hour locomotion, they have severe deficits in motor learning, operant conditioning and active avoidance. In addition, the MSNs from these knockout mice have smaller cell bodies and decreased dendritic length compared to littermate controls. We conclude that NMDAR signaling in MSNs is critical for normal MSN morphology and many forms of learning

    Mechanical Tension Increases CCN2/CTGF Expression and Proliferation in Gingival Fibroblasts via a TGFΞ²-Dependent Mechanism

    Get PDF
    Unlike skin, oral gingival do not scar in response to tissue injury. Fibroblasts, the cell type responsible for connective tissue repair and scarring, are exposed to mechanical tension during normal and pathological conditions including wound healing and fibrogenesis. Understanding how human gingival fibroblasts respond to mechanical tension is likely to yield valuable insights not only into gingival function but also into the molecular basis of scarless repair. CCN2/connective tissue growth factor is potently induced in fibroblasts during tissue repair and fibrogenesis. We subjected gingival fibroblasts to cyclical strain (up to 72 hours) using the Flexercell system and showed that CCN2 mRNA and protein was induced by strain. Strain caused the rapid activation of latent TGFΞ², in a fashion that was reduced by blebbistatin and FAK/src inhibition, and the induction of endothelin (ET-1) mRNA and protein expression. Strain did not cause induction of Ξ±-smooth muscle actin or collagen type I mRNAs (proteins promoting scarring); but induced a cohort of pro-proliferative mRNAs and cell proliferation. Compared to dermal fibroblasts, gingival fibroblasts showed reduced ability to respond to TGFΞ² by inducing fibrogenic mRNAs; addition of ET-1 rescued this phenotype. Pharmacological inhibition of the TGFΞ² type I (ALK5) receptor, the endothelin A/B receptors and FAK/src significantly reduced the induction of CCN2 and pro-proliferative mRNAs and cell proliferation. Controlling TGFΞ², ET-1 and FAK/src activity may be useful in controlling responses to mechanical strain in the gingiva and may be of value in controlling fibroproliferative conditions such as gingival hyperplasia; controlling ET-1 may be of benefit in controlling scarring in response to injury in the skin

    Punicic Acid a Conjugated Linolenic Acid Inhibits TNFΞ±-Induced Neutrophil Hyperactivation and Protects from Experimental Colon Inflammation in Rats

    Get PDF
    BACKGROUND:Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO). The proinflammatory cytokine TNFalpha primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFalpha-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. METHODOLOGY AND PRINCIPAL FINDINGS:We analyzed the effect of punicic acid on TNFalpha-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFalpha-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP)-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFalpha+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. CONCLUSIONS/SIGNIFICANCE:These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFalpha-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases

    The living microarray: a high-throughput platform for measuring transcription dynamics in single cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current methods of measuring transcription in high-throughput have led to significant improvements in our knowledge of transcriptional regulation and Systems Biology. However, endpoint measurements obtained from methods that pool populations of cells are not amenable to studying time-dependent processes that show cell heterogeneity.</p> <p>Results</p> <p>Here we describe a high-throughput platform for measuring transcriptional changes in real time in single mammalian cells. By using reverse transfection microarrays we are able to transfect fluorescent reporter plasmids into 600 independent clusters of cells plated on a single microscope slide and image these clusters every 20 minutes. We use a fast-maturing, destabilized and nuclear-localized reporter that is suitable for automated segmentation to accurately measure promoter activity in single cells. We tested this platform with synthetic drug-inducible promoters that showed robust induction over 24 hours. Automated segmentation and tracking of over 11 million cell images during this period revealed that cells display substantial heterogeneity in their responses to the applied treatment, including a large proportion of transfected cells that do not respond at all.</p> <p>Conclusions</p> <p>The results from our single-cell analysis suggest that methods that measure average cellular responses, such as DNA microarrays, RT-PCR and chromatin immunoprecipitation, characterize a response skewed by a subset of cells in the population. Our method is scalable and readily adaptable to studying complex systems, including cell proliferation, differentiation and apoptosis.</p

    Caenorhabditis elegans Myotubularin MTM-1 Negatively Regulates the Engulfment of Apoptotic Cells

    Get PDF
    During programmed cell death, apoptotic cells are recognized and rapidly engulfed by phagocytes. Although a number of genes have been identified that promote cell corpse engulfment, it is not well understood how phagocytosis of apoptotic cells is negatively regulated. Here we have identified Caenorhabditis elegans myotubularin MTM-1 as a negative regulator of cell corpse engulfment. Myotubularins (MTMs) constitute a large, highly conserved family of lipid phosphatases. MTM gene mutations are associated with various human diseases, but the cellular functions of MTM proteins are not clearly defined. We found that inactivation of MTM-1 caused significant reduction in cell corpses in strong loss-of-function mutants of ced-1, ced-6, ced-7, and ced-2, but not in animals deficient in the ced-5, ced-12, or ced-10 genes. In contrast, overexpression of MTM-1 resulted in accumulation of cell corpses. This effect is dependent on the lipid phosphatase activity of MTM-1. We show that loss of mtm-1 function accelerates the clearance of cell corpses by promoting their internalization. Importantly, the reduction of cell corpses caused by mtm-1 RNAi not only requires the activities of CED-5, CED-12, and CED-10, but also needs the functions of the phosphatidylinositol 3-kinases (PI3Ks) VPS-34 and PIKI-1. We found that MTM-1 localizes to the plasma membrane in several known engulfing cell types and may modulate the level of phosphatidylinositol 3-phosphate (PtdIns(3)P) in vivo. We propose that MTM-1 negatively regulates cell corpse engulfment through the CED-5/CED-12/CED-10 module by dephosphorylating PtdIns(3)P on the plasma membrane
    • …
    corecore