5,082 research outputs found

    Stability analysis of event-triggered anytime control with multiple control laws

    Full text link
    To deal with time-varying processor availability and lossy communication channels in embedded and networked control systems, one can employ an event-triggered sequence-based anytime control (E-SAC) algorithm. The main idea of E-SAC is, when computing resources and measurements are available, to compute a sequence of tentative control inputs and store them in a buffer for potential future use. State-dependent Random-time Drift (SRD) approach is often used to analyse and establish stability properties of such E-SAC algorithms. However, using SRD, the analysis quickly becomes combinatoric and hence difficult to extend to more sophisticated E-SAC. In this technical note, we develop a general model and a new stability analysis for E-SAC based on Markov jump systems. Using the new stability analysis, stochastic stability conditions of existing E-SAC are also recovered. In addition, the proposed technique systematically extends to a more sophisticated E-SAC scheme for which, until now, no analytical expression had been obtained.Comment: Accepted for publication in IEEE Transactions on Automatic Contro

    On "the authentic damping mechanism" of the phonon damping model

    Full text link
    Some general features of the phonon damping model are presented. It is concluded that the fits performed within this model have no physical content

    A path planning control for a vessel dynamic positioning system based on robust adaptive fuzzy strategy

    Get PDF
    The thrusters and propulsion propellers systems, as well as the operating situations, are all well-known nonlinearities which are caused less accuracy of the dynamic positioning system (DPS) of vessels in the path planning control process. In this study, to enhance the robust performance of the DPS, we proposed a robust adaptive fuzzy control model to reduce the effect of uncertainty problems and disturbances on the DPS. Firstly, the adaptive fuzzy controller with adaptive law is designed to adjust the membership function of the fuzzy controller to minimize the error in path planning control of the vessel. Secondly, the H∞ performance of robust tracking is proved by the Lyapunov theory. Moreover, compared to the other controller, a simulation experiment comprising two case studies confirmed the efficiency of the approach. Finally, the results showed that the proposed controller reaches control quality, performance and stability

    BPLight-CNN: A Photonics-based Backpropagation Accelerator for Deep Learning

    Full text link
    Training deep learning networks involves continuous weight updates across the various layers of the deep network while using a backpropagation algorithm (BP). This results in expensive computation overheads during training. Consequently, most deep learning accelerators today employ pre-trained weights and focus only on improving the design of the inference phase. The recent trend is to build a complete deep learning accelerator by incorporating the training module. Such efforts require an ultra-fast chip architecture for executing the BP algorithm. In this article, we propose a novel photonics-based backpropagation accelerator for high performance deep learning training. We present the design for a convolutional neural network, BPLight-CNN, which incorporates the silicon photonics-based backpropagation accelerator. BPLight-CNN is a first-of-its-kind photonic and memristor-based CNN architecture for end-to-end training and prediction. We evaluate BPLight-CNN using a photonic CAD framework (IPKISS) on deep learning benchmark models including LeNet and VGG-Net. The proposed design achieves (i) at least 34x speedup, 34x improvement in computational efficiency, and 38.5x energy savings, during training; and (ii) 29x speedup, 31x improvement in computational efficiency, and 38.7x improvement in energy savings, during inference compared to the state-of-the-art designs. All these comparisons are done at a 16-bit resolution; and BPLight-CNN achieves these improvements at a cost of approximately 6% lower accuracy compared to the state-of-the-art

    Φ34\Phi^4_3 measures on compact Riemannian 33-manifolds

    Full text link
    We construct the Φ34\Phi^4_3 measure on an arbitrary 3-dimensional compact Riemannian manifold without boundary as an invariant probability measure of a singular stochastic partial differential equation. Proving the nontriviality and the covariance under Riemannian isometries of that measure gives for the first time a non-perturbative, non-topological interacting Euclidean quantum field theory on curved spaces in dimension 3. This answers a longstanding open problem of constructive quantum field theory on curved 3 dimensional backgrounds. To control analytically several Feynman diagrams appearing in the construction of a number of random fields, we introduce a novel approach of renormalization using microlocal and harmonic analysis. This allows to obtain a renormalized equation which involves some universal constants independent of the manifold. We also define a new vectorial Cole-Hopf transform which allows to deal with the vectorial Φ34\Phi^4_3 model where Φ\Phi is now a bundle valued random field. In a companion paper, we develop in a self-contained way all the tools from paradifferential and microlocal analysis that we use to build in our manifold setting a number of analytic and probabilistic objects.Comment: references added, Section 6.2 adde
    corecore