5 research outputs found

    The effect of brain serotonin deficit (TPH2-KO) on the expression and activity of liver cytochrome P450 enzymes in aging male Dark Agouti rats

    Get PDF
    BACKGROUND: Liver cytochrome P450 (CYP) greatly contributes to the metabolism of endogenous substances and drugs. Recent studies have demonstrated that CYP expression in the liver is controlled by the central nervous system via hormonal pathways. In particular, the expression of hepatic CYPs is negatively regulated by the brain serotoninergic system. The present study aimed to investigate changes in the function of the main liver drug-metabolizing CYP enzymes as a result of serotonin depletion in the brain of aging rats, caused by knockout of brain tryptophan hydroxylase gene (TPH2-KO). METHODS: The hepatic CYP mRNA (qRT-PCR), protein level (Western blotting) and activity (HPLC), and serum hormone levels (ELISA) were measured in Dark Agouti wild-type (WT) male rats (mature 3.5-month-old and senescent 21-month-old) and in TPH2-KO senescent animals. RESULTS: The expression/activity of the studied CYPs decreased with age in the liver of wild-type rats. The deprivation of serotonin in the brain of aging males decreased the mRNA level of most of the studied CYPs (CYP1A/2A/2B/3A), and lowered the protein level of CYP2C11 and CYP3A. In contrast, the activities of CYP2C11, CYP3A and CYP2C6 were increased. The expression of cytochrome b(5) decreased in aging rats, but increased in TPH2-deficient senescent animals. The serum concentration of growth hormone declined in the aged and further dropped down in TPH2-deficient senescent rats. CONCLUSIONS: Rat liver cytochrome P450 functions deteriorate with age, which may impair drug metabolism. The TPH2 knockout, which deprives brain serotonin, affects cytochrome P450 expression and activity differently in mature and senescent male rats

    Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis

    Get PDF
    BACKGROUND: Chorea-acanthocytosis (ChAc) is a neuroacanthocytosis syndrome presenting with severe movement disorders poorly responsive to drug therapy. Case reports suggest that bilateral deep brain stimulation (DBS) of the ventro-postero-lateral internal globus pallidus (GPi) may benefit these patients. To explore this issue, the present multicentre (n=12) retrospective study collected the short and long term outcome of 15 patients who underwent DBS. METHODS: Data were collected in a standardized way 2-6 months preoperatively, 1-5 months (early) and 6 months or more (late) after surgery at the last follow-up visit (mean follow-up: 29.5 months). RESULTS: Motor severity, assessed by the Unified Huntington's Disease Rating Scale-Motor Score, UHDRS-MS), was significantly reduced at both early and late post-surgery time points (mean improvement 54.3% and 44.1%, respectively). Functional capacity (UHDRS-Functional Capacity Score) was also significantly improved at both post-surgery time points (mean 75.5% and 73.3%, respectively), whereas incapacity (UHDRS-Independence Score) improvement reached significance at early post-surgery only (mean 37.3%). Long term significant improvement of motor symptom severity (≥ 20 % from baseline) was observed in 61.5 % of the patients. Chorea and dystonia improved, whereas effects on dysarthria and swallowing were variable. Parkinsonism did not improve. Linear regression analysis showed that preoperative motor severity predicted motor improvement at both post-surgery time points. The most serious adverse event was device infection and cerebral abscess, and one patient died suddenly of unclear cause, 4 years after surgery. CONCLUSION: This study shows that bilateral DBS of the GPi effectively reduces the severity of drug-resistant hyperkinetic movement disorders such as present in ChAc

    Cytochrome P450 2D (CYP2D) enzyme dysfunction associated with aging and serotonin deficiency in the brain and liver of female Dark Agouti rats

    No full text
    Among the enzymes that support brain metabolism, cytochrome P450 (CYP) enzymes occupy an important place. These enzymes catalyze the biotransformation pathways of neuroactive endogenous substrates (neurosteroids, neurotransmitters) and are necessary for the detoxification processes. The aim of the present study was to assess changes in the CYP2D activity and protein level during the aging process and as a result of serotonin deficiency in the female brain. The CYP2D activity was measured in brain and liver microsomes of Dark Agouti wild type (WT) female rats (mature 15-week-old and senescent 18-month-old rats) and in tryptophan hydroxylase 2 (TPH2)-deficient senescent female rats. The CYP2D activity in mature WT Dark Agouti females was independent of the changing phases of the estrous cycle. In senescent WT females rats, the CYP2D activity and protein level were decreased in the cerebral cortex, hippocampus, cerebellum and liver, but increased in the brain stem. In the other examined structures (frontal cortex, hypothalamus, thalamus, striatum), the enzyme activity did not change. In aging TPH2-deficient females, the CYP2D activity and protein levels were decreased in the frontal cortex, hypothalamus and brain stem (activity only), remaining unchanged in other brain structures and liver, relative to senescent WT females. In summary, the aging process and TPH2 deficit affect the CYP2D activity and protein level in female rats, which may have a negative impact on the compensatory capacity of CYP2D in the synthesis of serotonin and dopamine in cerebral structures involved in cognitive and emotional functions. In the liver, the CYP2D-catalyzed drug metabolism may be diminished in elderly females. The results in female rats are compared with those obtained previously in males. It is concluded that aging and serotonin deficiency exert sex-dependent effects on brain CYP2D, which seem to be less favorable in females concerning CYP2D-mediated neurotransmitter synthesis, but beneficial regarding slower neurosteroid metabolism

    Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis

    No full text
    BACKGROUND: Chorea-acanthocytosis (ChAc) is a neuroacanthocytosis syndrome presenting with severe movement disorders poorly responsive to drug therapy. Case reports suggest that bilateral deep brain stimulation (DBS) of the ventro-postero-lateral internal globus pallidus (GPi) may benefit these patients. To explore this issue, the present multicentre (n=12) retrospective study collected the short and long term outcome of 15 patients who underwent DBS. METHODS: Data were collected in a standardized way 2-6 months preoperatively, 1-5 months (early) and 6 months or more (late) after surgery at the last follow-up visit (mean follow-up: 29.5 months). RESULTS: Motor severity, assessed by the Unified Huntington's Disease Rating Scale-Motor Score, UHDRS-MS), was significantly reduced at both early and late post-surgery time points (mean improvement 54.3% and 44.1%, respectively). Functional capacity (UHDRS-Functional Capacity Score) was also significantly improved at both post-surgery time points (mean 75.5% and 73.3%, respectively), whereas incapacity (UHDRS-Independence Score) improvement reached significance at early post-surgery only (mean 37.3%). Long term significant improvement of motor symptom severity (≥ 20 % from baseline) was observed in 61.5 % of the patients. Chorea and dystonia improved, whereas effects on dysarthria and swallowing were variable. Parkinsonism did not improve. Linear regression analysis showed that preoperative motor severity predicted motor improvement at both post-surgery time points. The most serious adverse event was device infection and cerebral abscess, and one patient died suddenly of unclear cause, 4 years after surgery. CONCLUSION: This study shows that bilateral DBS of the GPi effectively reduces the severity of drug-resistant hyperkinetic movement disorders such as present in ChAc
    corecore