103 research outputs found

    Genetic variation in the 3′-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7: potential effects on regulation by microRNA and pharmacogenomics relevance

    Get PDF
    Introduction: Pharmacogenomics research has concentrated on variation in genes coding for drug metabolising enzymes, transporters and nuclear receptors. However, variation affecting microRNA could also play a role in drug response. This project set out to investigate potential microRNA target sites in 11 genes and the extent of variation in the 3'-UTR of six selected genes; CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2 and UGT2B7. Methods: Fifteen microRNA target prediction algorithms were used to identify microRNAs predicted to regulate 11 genes. The 3'-UTR of the 6 genes which topped the list of potential microRNA targets was sequenced in 30 black South Africans. In addition, genetic variants within these genes were investigated for interference with mRNA-microRNA interactions. Potential effects of observed variants were determined using in silico prediction tools. Results: The 11 genes coding for DMEs, transporters and nuclear receptors were predicted to be targets of microRNAs with CYP2B6, NR1I2 (PXR), CYP3A4 and CYP1A2, interacting with the most microRNAs. The majority of identified genetic variants were predicted to interfere with microRNA regulation. For example, the variant, rs1054190C in NR1I2 was predicted to result in the presence of a binding site for the microRNA miR-1250-5p, while the variant rs1054191G was predicted to result in the absence of a recognition site for miR-371b-3p, miR-4258 and miR-4707-3p. Fifteen of the seventeen, novel variants occurred within microRNA target sequences.Conclusion: The 3'-UTR harbours variation that is likely to influence regulation of specific genes by microRNA. In silico prediction followed by functional validation could aid in decoding the contribution of variation in the 3'-UTR, to some unexplained heritability that affects drug response. Understanding the specific role of each microRNA may lead to identification of markers for targeted therapy and therefore improve personalized drug treatment

    The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of oesophageal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Glutathione S-transferases (GSTs) comprise a group of enzymes that are critical in the detoxification of carcinogens. In this study the effects of polymorphisms in these genes on the risk of developing oesophageal squamous cell carcinoma (OSCC) were evaluated in a hospital-based case-control study in two South African population groups. Genetic polymorphisms in GSTs were investigated in 245 patients and 288 controls samples by PCR-RFLP analysis.</p> <p>Results</p> <p>The <it>GSTP1 341T </it>variant was associated with significantly increased risk of developing OSCC as observed from the odds ratios for the <it>GSTP1 341C/T </it>and GSTP1 341T/T genotypes (OR = 4.98; 95%CI 3.05-8.11 and OR = 10.9; 95%CI 2.43-49.1, respectively) when compared to the homozygous GSTP1 341C/C genotype. The risk for OSCC in the combined GSTP1 341C/T and T/T genotypes was higher in tobacco smokers (OR = 7.51, 95% CI 3.82-14.7), alcohol consumers (OR = 15.3, 95% CI 1.81-12.9) and those using wood or charcoal for cooking and heating (OR = 12.1, 95% CI 3.26-49) when compared to those who did not smoke tobacco, or did not consume alcohol or user other forms of fuel for cooking and heating. Despite the close proximity of the two GSTP1 SNPs (313A>G and 341C>T), they were not in linkage disequilibrium in these two population groups (D':1.0, LOD: 0.52, r<sup>2</sup>: 0.225). The GSTP1 313A/G polymorphism on the other hand, did not display any association with OSSC. The homozygous <it>GSTT1*0 </it>genotype was associated with increased risk of OSCC (OR = 1.71, 95%CI 1.18-2.46) while the homozygous <it>GSTM1*0 </it>genotype was associated with significantly decreased risk of OSCC in the Mixed Ancestry subjects (OR= 0.39, 95%CI 0.25-0.62).</p> <p>Conclusions</p> <p>This study shows that the risk of developing OSCC in the South African population can be partly explained by genetic polymorphisms in GST coding genes and their interaction with environmental factors such as tobacco smoke and alcohol consumption.</p

    Novel CYP2E1 haplotype identified in a South African cohort

    Get PDF
    Alcohol abuse accounts for approximately 2.5 million deaths annually and is the third highest risk factor for disease and disability. Alcohol is metabolised by polymorphic enzymes and the status of an individual with respect to alcohol metabolising enzymes may have forensic relevance in post-mortems. Baseline frequencies of gene variants involved in alcohol metabolism need to be established to aid the identification of suitable population-specific polymorphisms to genotype during molecular autopsies. The principal alcohol metabolising enzymes include alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and cytochrome P450 2E1 (CYP2E1). Six single nucleotide polymorphisms (SNPs) - rs1229984G>A and rs2066702C>Tin ADH1B, rs671G>A in ALDH2, and rs3813867G>C, rs2031920C>T and rs6413432T>A in CYP2E1 - were genotyped in 150 individuals from four South African populations: Xhosa, Zulu, South African white and South African coloured. Allele frequencies for each SNP in the four population groups were 0-10% for rs1229984A, 2-12% for rs2066702T, 0-2% for rs671A, 1-4% for rs3813867C, 0-1% for rs2031920T and 3-15% for rs6413432A. Haplotype analysis revealed a novel combination of three SNPs in CYP2E1 whose effects on alcohol metabolism need further investigation. Establishment of baseline frequencies adds to our knowledge of genetic variation in alcohol metabolising enzymes and additional research is required to determine the functional significance of this novel CYP2E1 haplotype

    Heterozygous p.Asp50Asn mutation in the GJB2 gene in two Cameroonian patients with keratitis-ichthyosis-deafness (KID) syndrome

    Get PDF
    BACKGROUND: Keratitis-Ichthyosis-Deafness (KID) syndrome (OMIM 148210) is a congenital ectodermal defect that consists of an atypical ichthyosiform erythroderma associated with congenital sensorineural deafness. KID appears to be genetically heterogeneous and most cases are caused by GJB2 mutations. Mutations in African patients have been rarely described.CASE PRESENTATION:We report on two unrelated Cameroonian individuals affected with sporadic KID, presenting with the classic phenotypic triad. The two patients were heterozygous for the most frequent p.Asp50Asn mutation. This first report in patients from sub-Saharan African origin supports the hypothesis that the occurrence of KID due to p.Asp50Asn mutation in GJB2 seems not to be population specific. CONCLUSIONS: Our finding has implication in medical genetic practice, specifically in the molecular diagnosis of KID in Africans. These cases also reveal and emphasize the urgent need to develop appropriate policies to care for patients with rare/orphan diseases in Sub-Saharan Africa, as many of these cases become more and more recognizable

    Promoting Undetectable equals Untransmittable in sub-Saharan Africa: Implication for clinical practice and ART adherence

    Get PDF
    In the last decade, reliable scientific evidence has emerged to support the concept that undetectable viral loads prevent human immunodeficiency virus (HIV). Undetectable equals untransmissible (U = U) is a simple message that everyone can understand. The success of this concept depends on strict adherence to antiretroviral therapy (ART) and the attainment of suppressed viral loads (VLs). To achieve U = U in sub-Saharan Africa (SSA), poor adherence to ART, persistent low-level viremia, and the emergence of drug-resistant mutants are challenges that cannot be overlooked. Short of a cure for HIV, U = U can substantially reduce the burden and change the landscape of HIV epidemiology on the continent. From a public health perspective, the U = U concept will reduce stigmatization in persons living with HIV (PLWHIV) in SSA and strengthen public opinion to accept that HIV infection is not a death sentence. This will also promote ART adherence because PLWHIV will aim to achieve U = U within the shortest possible time. This article highlights challenges and barriers to achieving U = U and suggests how to promote the concept to make it beneficial and applicable in SSA. This concept, if expertly packaged by policy-makers, clinicians, health service providers, and HIV control programs, will help to stem the tide of the epidemic in SSA

    A cost effective RFLP method to genotype Solute carrier organic anion 1B1 (SLCO1B1) c.1929A>C (p.Leu643Phe, rs34671512); a variant with potential effect on rosuvastatin pharmacokinetics

    Get PDF
    Objective: This study describes a restriction fragment polymorphism protocol for rapidly screening the polymorphism SLCO1B1 c.1929A>C in genomic DNA samples. The polymorphism SLCO1B1 c.1929A>C has been associated with increased activity resulting in increased hepatic uptake of drugs. Currently SLCO1B1 c.1929A>C is genotyped using direct sequencing techniques and 5′ nuclease based assays which can be cost prohibiting in resource limited settings. The aim of this study therefore was to design and validate a cost effective RFLP for genotyping the SLCO1B1 c.1929A>C polymorphism. This study was designed to investigate the effect of the polymorphism SLCO1B1 c.1929A>C on interindividual variability in rosuvastatin pharmacokinetics in healthy volunteers of African descent. Results We describe a restriction fragment length polymorphism method to genotype SLCO1B1 c.1929A>C polymorphism using the restriction enzyme Ase1. A student’s t test with Welch correction was used to establish association between the SLCO1B1 c.1929A>C variant and rosuvastatin exposure. The frequency of the SLCO1B1 c.1929C allele amongst Zimbabweans was 6%. The SLCO1B1 c.1929C allele was associated with a 75% reduction (P C may therefore play a significant role in rosuvastatin response. The RFLP method is quick and cost effective

    Pharmacogenomic Research in South Africa: Lessons Learned and Future Opportunities in the Rainbow Nation

    Get PDF
    South Africa, like many other developing countries, stands to benefit from novel diagnostics and drugs developed by pharmacogenomics guidance due to high prevalence of disease burden in the region. This includes both communicable (e.g., HIV/AIDS and tuberculosis) and non-communicable (e.g., diabetes and cardiovascular) diseases. For example, although only 0.7% of the world’s population lives in South Africa, the country carries 17% of the global HIV/AIDS burden and 5% of the global tuberculosis burden. Nobel Peace Prize Laureate Archbishop Emeritus Desmond Tutu has coined the term Rainbow Nation, referring to a land of wealth in its many diverse peoples and cultures. It is now timely and necessary to reflect on how best to approach new genomics biotechnologies in a manner that carefully considers the public health needs and extant disease burden in the region. The aim of this paper is to document and review the advances in pharmacogenomics in South Africa and importantly, to evaluate the direction that future research should take. Previous research has shown that the populations in South Africa exhibit unique allele frequencies and novel genetic variation in pharmacogenetically relevant genes, often differing from other African and global populations. The high level of genetic diversity, low linkage disequilibrium and the presence of rare variants in these populations question the feasibility of the use of current commercially available genotyping platforms, and may partially account for genotype-phenotype discordance observed in past studies. However, the employment of high throughput technologies for genomic research, within the context of large clinical trials, combined with interdisciplinary studies and appropriate regulatory guidelines, should aid in acceleration of pharmacogenomic discoveries in high priority therapeutic areas in South Africa. Finally, we suggest that projects such as the H3Africa Initiative, the SAHGP and PGENI should play an integral role in the coordination of genomic research in South Africa, but also other African countries, by providing infrastructure and capital to local researchers, as well as providing aid in addressing the computational and statistical bottlenecks encountered at present

    Screening of variants for lactase persistence/non-persistence in populations from South Africa and Ghana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lactase non-persistence is a condition where lactase activity is decreased in the intestinal wall after weaning. In European derived populations a single nucleotide polymorphism (SNP) C/T<sub>-13910 </sub>residing 13.9 kb upstream from the lactase gene has been shown to define lactase activity, and several other single nucleotide polymorphisms (G/C<sub>-14010 </sub>T/G<sub>-13915</sub>, C/G<sub>-13907 </sub>and T/C<sub>-13913</sub>) in the same region have been identified in African and Middle East populations.</p> <p>Results</p> <p>The T<sub>-13910 </sub>allele most common in European populations was present in 21.8% mixed ancestry (N = 62) individuals and it was absent in the Xhosa (N = 109) and Ghana (N = 196) subjects. Five other substitutions were also found in the region covering the previously reported variants in African and Middle East populations. These included the G/C<sub>-14010 </sub>variant common in Kenyan and Tanzanian populations, which was present in 12.8% of Xhosa population and in 8.1% of mixed ancestry subjects. Two novel substitutions (C/T<sub>-14091 </sub>and A/C<sub>-14176</sub>) and one previously reported substitution G/A<sub>-13937 </sub>(rs4988234) were less common and present only in the Xhosa population. One novel substitution G/A<sub>-14107 </sub>was present in the Xhosa and Ghanaian populations. None of the other previously reported variants were identified.</p> <p>Conclusion</p> <p>Identification of the G/C<sub>-14010 </sub>variant in the Xhosa population, further confirms their genetic relatedness to other nomadic populations members that belong to the Bantu linguistic group in Tanzania and Kenya. Further studies are needed to confirm the possible relationship of the novel substitutions to the lactase persistence trait.</p

    Whole genome sequencing reveals population diversity and variation in HIV-1 specific host genes

    Get PDF
    HIV infection continues to be a major global public health issue. The population heterogeneity in susceptibility or resistance to HIV-1 and progression upon infection is attributable to, among other factors, host genetic variation. Therefore, identifying population-specific variation and genetic modifiers of HIV infectivity can catapult the invention of effective strategies against HIV-1 in African populations. Here, we investigated whole genome sequences of 390 unrelated HIV-positive and -negative individuals from Botswana. We report 27.7 million single nucleotide variations (SNVs) in the complete genomes of Botswana nationals, of which 2.8 million were missing in public databases. Our population structure analysis revealed a largely homogenous structure in the Botswana population. Admixture analysis showed elevated components shared between the Botswana population and the Niger-Congo (65.9%), Khoe-San (32.9%), and Europeans (1.1%) ancestries in the population of Botswana. Statistical significance of the mutational burden of deleterious and loss-of-function variants per gene against a null model was estimated. The most deleterious variants were enriched in five genes: ACTRT2 (the Actin Related Protein T2), HOXD12 (homeobox D12), ABCB5 (ATP binding cassette subfamily B member 5), ATP8B4 (ATPase phospholipid transporting 8B4) and ABCC12 (ATP Binding Cassette Subfamily C Member 12). These genes are enriched in the glycolysis and gluconeogenesis (p &lt; 2.84e-6) pathways and therefore, may contribute to the emerging field of immunometabolism in which therapy against HIV-1 infection is being evaluated. Published transcriptomic evidence supports the role of the glycolysis/gluconeogenesis pathways in the regulation of susceptibility to HIV, and that cumulative effects of genetic modifiers in glycolysis/gluconeogenesis pathways may potentially have effects on the expression and clinical variability of HIV-1. Identified genes and pathways provide novel avenues for other interventions, with the potential for informing the design of new therapeutics
    • …
    corecore