9 research outputs found

    Treatment response in rheumatoid arthritis is predicted by the microbiome: a large observational study in UK DMARD-naïve patients.

    Get PDF
    OBJECTIVES: Disease-modifying antirheumatic drugs (DMARDs) are first line treatment in rheumatoid arthritis (RA). Treatment response to DMARDs is patient-specific, dose efficacy is difficult to predict and long-term results variable. The gut microbiota are known to play a pivotal role in prodromal and early-disease RA, manifested by Prevotella spp. enrichment. The clinical response to therapy may be mediated by microbiota, and large-scale studies assessing the microbiome are few. This study assessed whether microbiome signals were associated with, and predictive of, patient response to DMARD-treatment. Accurate early identification of those who will respond poorly to DMARD therapy would allow selection of alternative treatment (e.g. biologic therapy), and potentially improve patient outcome. METHODS: A multicentre, longitudinal, observational study of stool- and saliva microbiome was performed in DMARD-naïve, newly diagnosed RA patients during introduction of DMARD treatment. Clinical data and samples were collected at baseline (n = 144) in DMARD-naïve patients and at six weeks (n = 117) and 12 weeks (n = 95) into DMARD-therapy. Samples collected (n = 365 stool, n = 365 saliva) underwent shotgun sequencing. Disease activity measures were collected at each timepoint and minimal clinically important improvement determined. RESULTS: In total, 26 stool microbes were found to decrease in those manifesting a minimal clinically important improvement. Prevotella spp. and Streptococcus spp. were the predominant taxa to decline following six weeks and 12 weeks of DMARDs, respectively. Furthermore, baseline microbiota of DMARD-naïve patients were indicative of future response. CONCLUSION: DMARDs appear to restore a perturbed microbiome to a eubiotic state. Moreover, microbiome status can be used to predict likelihood of patient response to DMARD

    The gut microbiota and metabolome are associated with diminished COVID-19 vaccine-induced antibody responses in immunosuppressed inflammatory bowel disease patients

    Get PDF
    Background: Patients with inflammatory bowel disease (IBD) treated with anti-TNF therapy exhibit attenuated humoral immune responses to vaccination against SARS-CoV-2. The gut microbiota and its functional metabolic output, which are perturbed in IBD, play an important role in shaping host immune responses. We explored whether the gut microbiota and metabolome could explain variation in anti-SARS-CoV-2 vaccination responses in immunosuppressed IBD patients. Methods: Faecal and serum samples were prospectively collected from infliximab-treated patients with IBD in the CLARITY-IBD study undergoing vaccination against SARS-CoV-2. Antibody responses were measured following two doses of either ChAdOx1 nCoV-19 or BNT162b2 vaccine. Patients were classified as having responses above or below the geometric mean of the wider CLARITY-IBD cohort. 16S rRNA gene amplicon sequencing, nuclear magnetic resonance (NMR) spectroscopy and bile acid profiling with ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) were performed on faecal samples. Univariate, multivariable and correlation analyses were performed to determine gut microbial and metabolomic predictors of response to vaccination. Findings: Forty-three infliximab-treated patients with IBD were recruited (30 Crohn's disease, 12 ulcerative colitis, 1 IBD-unclassified; 26 with concomitant thiopurine therapy). Eight patients had evidence of prior SARS-CoV-2 infection. Seventeen patients (39.5%) had a serological response below the geometric mean. Gut microbiota diversity was lower in below average responders (p = 0.037). Bilophila abundance was associated with better serological response, while Streptococcus was associated with poorer response. The faecal metabolome was distinct between above and below average responders (OPLS-DA R2X 0.25, R2Y 0.26, Q2 0.15; CV-ANOVA p = 0.038). Trimethylamine, isobutyrate and omega-muricholic acid were associated with better response, while succinate, phenylalanine, taurolithocholate and taurodeoxycholate were associated with poorer response. Interpretation: Our data suggest that there is an association between the gut microbiota and variable serological response to vaccination against SARS-CoV-2 in immunocompromised patients. Microbial metabolites including trimethylamine may be important in mitigating anti-TNF-induced attenuation of the immune response. Funding: JLA is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-502), funded by Imperial College London and The Joyce and Norman Freed Charitable Trust. BHM is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-002). The Division of Digestive Diseases at Imperial College London receives financial and infrastructure support from the NIHR Imperial Biomedical Research Centre (BRC) based at Imperial College Healthcare NHS Trust and Imperial College London. Metabolomics studies were performed at the MRC-NIHR National Phenome Centre at Imperial College London; this work was supported by the Medical Research Council (MRC), the National Institute of Health Research (NIHR) (grant number MC_PC_12025) and infrastructure support was provided by the NIHR Imperial Biomedical Research Centre (BRC). The NIHR Exeter Clinical Research Facility is a partnership between the University of Exeter Medical School College of Medicine and Health, and Royal Devon and Exeter NHS Foundation Trust. This project is supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care

    Audiotactile interactions in temporal perception

    Full text link

    Evidence for infection in intervertebral disc degeneration: a systematic review

    No full text
    PURPOSE: Back pain is a major problem worldwide and is linked to intervertebral disc degeneration and Modic change. Several studies report growth of bacteria following extraction of degenerate discs at spine surgery. A pathophysiological role for infection in back pain has been proposed. METHOD: We conducted a PRISMA systematic review. MEDLINE, PubMed, Scopus and Web of Science were searched with the terms Modic change, intervertebral dis*, bacteria, microb*, and infect*. Date limits of 2001–2021 were set. Human studies investigating the role of bacteria in disc degeneration or Modic change in vertebrae were included. RESULTS: Thirty-six articles from 34 research investigations relating to bacteria in human degenerate discs were found. Cutibacterium acnes was identified in pathological disc material. A ‘candidate bacterium’ approach has been repeatedly adopted which may have biased results to find species a priori, with disc microbial evidence heavily weighted to find C. acnes. CONCLUSION: Evidence to date implicates C. acnes identified through culture, microscopy and sequencing, with some suggestion of diverse bacterial colonisation in the disc. This review found studies which used culture methods and conventional PCR for bacterial detection. Further agnostic investigation using newer methods should be undertaken. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00586-021-07062-1

    Rectal swabs as a viable alternative to faecal sampling for the analysis of gut microbiota functionality and composition

    Get PDF
    Faecal or biopsy samples are frequently used to analyse the gut microbiota, but issues remain with the provision and collection of such samples. Rectal swabs are widely-utilised in clinical practice and previous data demonstrate their potential role in microbiota analyses; however, studies to date have been heterogenous, and there are a particular lack of data concerning the utility of swabs for the analysis of the microbiota’s functionality and metabolome. We compared paired stool and rectal swab samples from healthy individuals to investigate whether rectal swabs are a reliable proxy for faecal sampling. There were no significant differences in key alpha and beta diversity measures between swab and faecal samples, and inter-subject variability was preserved. Additionally, no significant differences were demonstrated in abundance of major annotated phyla. Inferred gut functionality using Tax4Fun2 showed excellent correlation between the two sampling techniques (Pearson’s coefficient r = 0.9217, P < 0.0001). Proton nuclear magnetic resonance (1H NMR) spectroscopy enabled the detection of 20 metabolites, with overall excellent correlation identified between rectal swab and faecal samples for levels all metabolites collectively, although more variable degrees of association between swab and stool for levels of individual metabolites. These data support the utility of rectal swabs in both compositional and functional analyses of the gut microbiota

    Audiotactile interactions in temporal perception.

    No full text
    In the present review, we focus on how commonalities in the ontogenetic development of the auditory and tactile sensory systems may inform the interplay between these signals in the temporal domain. In particular, we describe the results of behavioral studies that have investigated temporal resolution (in temporal order, synchrony/asynchrony, and simultaneity judgment tasks), as well as temporal numerosity perception, and similarities in the perception of frequency across touch and hearing. The evidence reviewed here highlights features of audiotactile temporal perception that are distinctive from those seen for other pairings of sensory modalities. For instance, audiotactile interactions are characterized in certain tasks (e.g., temporal numerosity judgments) by a more balanced reciprocal influence than are other modality pairings. Moreover, relative spatial position plays a different role in the temporal order and temporal recalibration processes for audiotactile stimulus pairings than for other modality pairings. The effect exerted by both the spatial arrangement of stimuli and attention on temporal order judgments is described. Moreover, a number of audiotactile interactions occurring during sensory-motor synchronization are highlighted. We also look at the audiotactile perception of rhythm and how it may be affected by musical training. The differences emerging from this body of research highlight the need for more extensive investigation into audiotactile temporal interactions. We conclude with a brief overview of some of the key issues deserving of further research in this area
    corecore