33 research outputs found

    Subclassification of advanced-stage hepatocellular carcinoma with macrovascular invasion: combined transarterial chemoembolization and radiotherapy as an alternative first-line treatment

    Get PDF
    Background/Aim The Barcelona Clinic Liver Cancer (BCLC) guidelines recommend systemic therapy as the only first-line treatment for patients with BCLC stage C hepatocellular carcinoma (HCC) despite its heterogeneity of disease extent. We aimed to identify patients who might benefit from combined transarterial chemoembolization (TACE) and radiation therapy (RT) by subclassifying BCLC stage C. Methods A total of 1,419 treatment-naïve BCLC stage C patients with macrovascular invasion (MVI) who were treated with combined TACE and RT (n=1,115) or systemic treatment (n=304) were analyzed. The primary outcome was overall survival (OS). Factors associated with OS were identified and assigned points by the Cox model. The patients were subclassified into three groups based on these points. Results The mean age was 55.4 years, and 87.8% were male. The median OS was 8.3 months. Multivariate analysis revealed a significant association of Child-Pugh B, infiltrative-type tumor or tumor size ≥10 cm, main or bilateral portal vein invasion, and extrahepatic metastasis with poor OS. The sub-classification was categorized into low (point ≤1), intermediate (point=2), and high (point ≥3) risks based on the sum of points (range, 0–4). The OS in the low, intermediate, and high-risk groups was 22.6, 8.2, and 3.8 months, respectively. In the low and intermediate-risk groups, patients treated with combined TACE and RT exhibited significantly longer OS (24.2 and 9.5 months, respectively) than those who received systemic treatment (6.4 and 5.1 months, respectively; P<0.0001). Conclusions Combined TACE and RT may be considered as a first-line treatment option for HCC patients with MVI when classified into low- and intermediate-risk groups

    Source Contributions to Carbon Monoxide Concentrations During KORUS‐AQ Based on CAM‐chem Model Applications

    Get PDF
    We investigate regional sources contributing to CO during the Korea United States Air Quality (KORUS-AQ) campaign conducted over Korea (1 May to 10 June 2016) using 17 tagged CO simulations from the Community Atmosphere Model with chemistry (CAM-chem). The simulations use three spatial resolutions, three anthropogenic emission inventories, two meteorological fields, and nine emission scenarios. These simulations are evaluated against measurements from the DC-8 aircraft and Measurements Of Pollution In The Troposphere (MOPITT). Results show that simulations using bottom-up emissions are consistently lower (bias: -34 to -39%) and poorer performing (Taylor skill: 0.38-0.61) than simulations using alternative anthropogenic emissions (bias: -6 to -33%; Taylor skill: 0.48-0.86), particularly for enhanced Asian CO and volatile organic compound (VOC) emission scenarios, suggesting underestimation in modeled CO background and emissions in the region. The ranges of source contributions to modeled CO along DC-8 aircraft from Korea and southern (90 degrees E to 123 degrees E, 20 degrees N to 29 degrees N), middle (90 degrees E to 123 degrees E, 29 degrees N to 38.5 degrees N), and northern (90 degrees E to 131.5 degrees E, 38.5 degrees N to 45 degrees N) East Asia (EA) are 6-13%, similar to 5%, 16-28%, and 9-18%, respectively. CO emissions from middle and northern EA can reach Korea via transport within the boundary layer, whereas those from southern EA are transported to Korea mainly through the free troposphere. Emission contributions from middle EA dominate during continental outflow events (29-51%), while Korean emissions play an overall more important role for ground sites (up to 25-49%) and plumes within the boundary layer (up to 25-44%) in Korea. Finally, comparisons with four other source contribution approaches (FLEXPART 9.1 back trajectory calculations driven by Weather Research and Forecasting (WRF) WRF inert tracer, China signature VOCs, and CO to CO2 enhancement ratios) show general consistency with CAM-chem.National Science Foundation (NSF); U.S. Department of Energy (DOE); National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Program; NCAR Advanced Study Program Postdoctoral Fellowship; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [2-1505, 2-1803]; National Science Foundation; NASA [NNX16AD96G, NNX16AE16G, NNX17AG39G]6 month embargo; published online: 1 February 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    High-Performance Triisopropylsilylethynyl Pentacene Transistors via Spin Coating with a Crystallization-Assisting Layer

    No full text
    The effects of spin speed and an amorphous fluoropolymer (CYTOP)-patterned substrate on the crystalline structures and device performance of triisopropylsilylethynyl pentacene (TIPS-PEN) organic field-effect transistors (OFETs) were investigated. The crystallinity of the TIPS-PEN film was enhanced by decreasing the spin speed, because slow evaporation of the solvent provided a sufficient time for the formation of thermodynamically stable crystalline structures. In addition, the adoption of a CYTOP-patterned substrate induced the three-dimensional (3D) growth of the TIPS-PEN crystals, because the patterned substrate confined the TIPS-PEN molecules and allowed sufficient time for the self-organization of TIPS-PEN. TIPS-PEN OFETs fabricated at a spin speed of 300 rpm with a CYTOP-patterned substrate showed a field-effect mobility of 0.131 cm(2) V-1 s(-1), which is a remarkable improvement over previous spin-coated TIPS-PEN OFETs.X112931sciescopu

    Analysis of Laser Cutting Process for Different Diagonal Material Shapes

    No full text
    In this study, the laser cutting characteristics were analyzed according to the shape of the back side of the specimen, and the laser cutting characteristics were compared according to the thickness of the edge (10 mm, 20 mm, and 30 mm). A Yb-YAG laser was used in this study, and the cutting target was STS304 with a thickness of 50 mm, and the cutting process was analyzed using a high-speed camera. In the experiment, it was found through image analysis that the cutting performance was excellent at 30 mm thickness of the edge. In order to analyze this reason, a thermal conduction analysis (numerical simulation) was performed, and it was confirmed that the thicker thickness of the edge caused a preheating effect during laser cutting due to a large amount of heat accumulation. This effect can be used as a reference for the initial processing state while cutting thick metals as it is a characteristic that has not been revealed before

    Evaluation of transarterial chemoembolization refractoriness in patients with hepatocellular carcinoma.

    No full text
    BACKGROUND & AIM:In clinical practice, transarterial chemoembolization (TACE) has been widely used for the treatment of hepatocellular carcinoma (HCC) beyond as well as within guideline recommendations. Here we aimed to verify whether two consecutive non-responses could be an optimal criterion for creating a rule to stop TACE being performed on these patients. METHODS:This study evaluated 200 patients with HCC beyond the Milan criteria, initially treated with TACE. TACE response was determined using the mRECIST criteria via dynamic CT or MRI. Median follow-up duration was 23.9 months. RESULTS:Within the 200 patients analyzed, 183 (91.5%) were male, with a total median age of 59.8 years. The mean size of the largest tumor was 6.8 cm, with 80 (40.0%) patients with ≥4 tumors. After the first TACE procedure, complete response, partial response, stable disease, or progressive disease were observed in 48 (24.0%), 87 (43.5%), 59 (29.5%) and 6 (3.0%) of patients, respectively. 45 (22.5%) patients showed no objective response (OR) following two consecutive TACE sessions. Of these, 28 received a subsequent TACE, with a 10.7% OR rate. Patients without OR showed poorer survival when compared to patients who achieved OR after repeated TACE. Multivariable analysis showed that size of the largest tumor >5cm and high alpha-fetoprotein of >200 ng/mL were significant factors associated with failure of OR to two consecutive TACE sessions. CONCLUSION:Patients showing no OR to two consecutive TACE sessions will present a poor OR to subsequent TACE procedures. Early transition to systemic therapy may be advocated in such cases

    Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer’s Disease Mice via Transcriptomic and Cellular Analysis

    No full text
    Alzheimer’s disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer’s disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer’s disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer’s disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue
    corecore