181 research outputs found

    Single-shot fluctuations in waveguided high-harmonic generation

    Get PDF
    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide

    Seeded x-ray free-electron laser generating radiation with laser statistical properties

    Full text link
    The invention of optical lasers led to a revolution in the field of optics and even to the creation of completely new fields of research such as quantum optics. The reason was their unique statistical and coherence properties. The newly emerging, short-wavelength free-electron lasers (FELs) are sources of very bright coherent extreme-ultraviolet (XUV) and x-ray radiation with pulse durations on the order of femtoseconds, and are presently considered to be laser sources at these energies. Most existing FELs are highly spatially coherent but in spite of their name, they behave statistically as chaotic sources. Here, we demonstrate experimentally, by combining Hanbury Brown and Twiss (HBT) interferometry with spectral measurements that the seeded XUV FERMI FEL-2 source does indeed behave statistically as a laser. The first steps have been taken towards exploiting the first-order coherence of FELs, and the present work opens the way to quantum optics experiments that strongly rely on high-order statistical properties of the radiation.Comment: 24 pages, 10 figures, 37 reference

    Two-colour generation in a chirped seeded Free-Electron Laser

    Full text link
    We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments

    Cavity ring-down spectroscopy for molecular trace gas detection using a pulsed DFB QCL emitting at 6.8 \u3bcm

    Get PDF
    A trace gas sensor based on pulsed cavity ring-down spectroscopy (CRDS) was developed for measurement of the \u3bd4 fundamental vibrational band of ammonia (NH3) centered at 1468.898 cm-1. A pulsed distributed feedback quantum cascade laser (DFB-QCL) operating at 6.8 \u3bcm (1470.58 cm-1) quite well covered the absorption band of the ammonia and strong fundamental vibrational absorption bands of different molecular gases in this unexplored region. The cavity was partially evacuated down to 0.4 Atm by a turbo-molecular pump to reduce the partial interference between the NH3 spectra and water near the absorption peak of ammonia. A sensitivity of nine parts per billion was reached for a measurement time of 120 s as well as an optical path length of 226 m. The device demonstrated high spectral performance and versatility due to its wide tuning range, narrow linewidth, and comparatively high-energy mid-IR radiation in the relatively unexplored 6.8 \u3bcm region, which is very important for high-resolution spectroscopy of a variety of gases

    Scaling the mid-IR radiation at 7 μm - Two-stage double-pass 195 MHz narrow-bandwidth DFG laser system

    Get PDF
    We present a laser system based on difference frequency generation (DFG) to produce tunable, narrow-linewidth (<30 pm), and high-energy mid-IR radiation in the 6785 nm region. The system exploits nonlinear crystals (such as LiInS2, LiInSe2 and BaGa4Se7) and nanosecond pulses generated by single-frequency Nd:YAG and Cr:forsterite lasers at 1064 and 1262 nm, respectively. Various experimental configurations are used: single-pass and double-pass through the nonlinear crystal. Additional increments of the output energy can be obtained by performing two stage double-pass geometry

    A novel free-electron laser single-pulse Wollaston polarimeter for magneto-dynamical studies

    Get PDF
    Here, we report on the conceptual design, the hardware realization, and the first experimental results of a novel and compact x-ray polarimeter capable of a single-pulse linear polarization angle detection in the extreme ultraviolet photon energy range. The polarimeter is tested by performing time resolved pump-probe experiments on a Ni80Fe20 Permalloy film at the M-2,M-3 Ni edge at an externally seeded free-electron laser source. Comparison with similar experiments reported in the literature shows the advantages of our approach also in view of future experiments
    corecore