167 research outputs found

    Global end-diastolic volume increases to maintain fluid responsiveness in sepsis-induced systolic dysfunction

    Get PDF
    Background: Sepsis-induced cardiac dysfunction may limit fluid responsiveness and the mechanism thereof remains unclear. Since cardiac function may affect the relative value of cardiac filling pressures, such as the recommended central venous pressure (CVP), versus filling volumes in guiding fluid loading, we studied these parameters as determinants of fluid responsiveness, according to cardiac function.Methods: A delta CVP-guided, 90 min colloid fluid loading protocol was performed in 16 mechanically ventilated patients with sepsis-induced hypotension and three 30 min consecutive fluid loading steps of about 450 mL per patient were evaluated. Global end-diastolic volume index (GEDVI), cardiac index (CI) and global ejection fraction (GEF) were assessed from transpulmonary dilution. Baseline and changes in CVP and GEDVI were compared among responding (CI increase ≥10% and ≥15%) and non-responding fluid loading steps, in patient with low (<20%, n = 9) and near-normal (≥20%) GEF (n = 7) at baseline.Results: A low GEF was in line with other indices of impaired cardiac (left ventricular) function, prior to and after fluid loading. Of 48 fluid loading steps, 9 (of 27) were responding when GEF <20% and 6 (of 21) when GEF ≥20. Prior to fluid loading, CVP did not differ between responding and non-responding steps and levels attained were 23 higher in the latter, regardless of GEF (P = 0.004). Prior to fluid loading, GEDVI (and CI) was higher in responding (1007 ± 306 mL/m2) than non-responding steps (870 ± 236 mL/m2) when GEF was low (P = 0.002), but did not differ when GEF was near-normal. Increases in GEDVI were associated with increases in CI and fluid responsiveness, regardless of GEF (P < 0.001).Conclusions: As estimated from transpulmonary dilution, about half of patients with sepsis-induced hypotension have systolic cardiac dysfunction. During dysfunction, cardiac dilation with a relatively high baseline GEDVI maintains fluid responsiveness by further dilatation (increase in GEDVI rather than of CVP) as in patients without dysfunction. Absence of fluid responsiveness during systolic cardiac dysfunction may be caused by diastolic dysfunction and/or right ventricular dysfunction

    Recovery of myocardial perfusion after percutaneous coronary intervention of chronic total occlusions is comparable to hemodynamically significant non-occlusive lesions.

    Get PDF
    BACKGROUND: The benefits of chronic coronary total occlusion (CTO) percutaneous coronary intervention (PCI) are being questioned. The aim of this study was to assess the effects of CTO PCI on absolute myocardial perfusion, as compared with PCI of hemodynamically significant non-CTO lesions. METHODS: Consecutive patients with a preserved left ventricular ejection fraction (≥50%) and a CTO or non-CTO lesion, in whom [15 O]H2 O positron emission tomography was performed prior and after successful PCI, were included. Change in quantitative (hyperemic) myocardial blood flow (MBF), coronary flow reserve (CFR) and perfusion defect size (in myocardial segments) were compared between CTOs and non-CTO lesions. RESULTS: In total 92 patients with a CTO and 31 patients with a non-CTO lesion were included. CTOs induced larger perfusion defect sizes (4.51 ± 1.69 vs. 3.23 ± 2.38 segments, P < 0.01) with lower hyperemic MBF (1.30 ± 0.37 vs. 1.58 ± 0.62 mL·min-1 ·g-1 , P < 0.01) and similarly impaired CFR (1.66 ± 0.75 vs. 1.89 ± 0.77, P = 0.17) compared with non-CTO lesions. After PCI both hyperemic MBF and CFR increased similarly between groups (P = 0.57 and 0.35) to normal ranges with higher hyperemic MBF values in non-CTO compared with CTO (2.89 ± 0.94 vs. 2.48 ± 0.73 mL·min-1 ·g-1 , P = 0.03). Perfusion defect sizes decreased similarly after CTO PCI and non-CTO PCI (P = 0.14), leading to small residual defect sizes in both groups (1.15 ± 1.44 vs. 0.61 ± 1.45 segments, P = 0.054). CONCLUSIONS: Myocardial perfusion findings are slightly more hampered in patients with a CTO before and after PCI. Percutaneous revascularization of CTOs, however, improves absolute myocardial perfusion similarly to PCI of hemodynamically significant non-CTO lesions, leading to satisfying results

    Data on the impact of scan quality on the diagnostic performance of CCTA, SPECT, and PET for diagnosing myocardial ischemia defined by fractional flow reserve on a per vessel level

    Get PDF
    Scan quality directly impacts the diagnostic performance of non-invasive imaging modalities as reported in a substudy of the PACIFC-trial: "Impact of Scan Quality on the Diagnostic Performance of CCTA, SPECT, and PET for Diagnosing Myocardial Ischemia Defined by Fractional Flow Reserve" [1]. This Data-in-Brief paper supplements the hereinabove mentioned article by presenting the diagnostic performance of CCTA, SPECT, and PET on a per vessel level for the detection of hemodynamic significant coronary artery disease (CAD) when stratified according to scan quality and vascular territory

    Automated SPECT analysis compared with expert visual scoring for the detection of FFR-defined coronary artery disease

    Get PDF
    PurposeTraditionally, interpretation of myocardial perfusion imaging (MPI) is based on visual assessment. Computer-based automated analysis might be a simple alternative obviating the need for extensive reading experience. Therefore, the aim of the present study was to compare the diagnostic performance of automated analysis with that of expert visual reading for the detection of obstructive coronary artery disease (CAD).Methods206 Patients (64% men, age 58.2 ± 8.7 years) with suspected CAD were included prospectively. All patients underwent 99mTc-tetrofosmin single-photon emission computed tomography (SPECT) and invasive coronary angiography with fractional flow reserve (FFR) measurements. Non-corrected (NC) and attenuation-corrected (AC) SPECT images were analyzed both visually as well as automatically by commercially available SPECT software. Automated analysis comprised a segmental summed stress score (SSS), summed difference score (SDS), stress total perfusion deficit (S-TPD), and ischemic total perfusion deficit (I-TPD), representing the extent and severity of hypoperfused myocardium. Subsequently, software was optimized with an institutional normal database and thresholds. Diagnostic performances of automated and visual analysis were compared taking FFR as a reference.ResultsSensitivity did not differ significantly between visual reading and most automated scoring parameters, except for SDS, which was significantly higher than visual assessment (p ConclusionAutomated analysis of myocardial perfusion SPECT can be as accurate as visual interpretation by an expert reader in detecting significant CAD defined by FFR.</div

    Comparison between the performance of quantitative flow ratio and perfusion imaging for diagnosing myocardial ischemia

    Get PDF
    OBJECTIVES This study compared the performance of the quantitative flow ratio (QFR) with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) myocardial perfusion imaging (MPI) for the diagnosis of fractional flow reserve (FFR)-defined coronary artery disease (CAD).BACKGROUND QFR estimates FFR solely based on cine contrast images acquired during invasive coronary angiography (ICA). Head-to-head studies comparing QFR with noninvasive MPI are lacking.METHODS A total of 208 (624 vessels) patients underwent technetium -99m tetrofosmin SPECT and [15O]H2O PET imaging before ICA in conjunction with FFR measurements. ICA was obtained without using a dedicated QFR acquisition protocol, and QFR computation was attempted in all vessels interrogated by FFR (552 vessels).RESULTS QFR computation succeeded in 286 (52%) vessels. QFR correlated well with invasive FFR overall (R = 0.79; p < 0.001) and in the subset of vessels with an intermediate (30% to 90%) diameter stenosis (R = 0.76; p < 0.001). Overall, per-vessel analysis demonstrated QFR to exhibit a superior sensitivity (70%) in comparison with SPECT (29%; p < 0.001), whereas it was similar to PET (75%; p = 1.000). Specificity of QFR (93%) was higher than PET (79%; p < 0.001) and not different from SPECT (96%; p = 1.000). As such, the accuracy of QFR (88%) was superior to both SPECT (82%; p = 0.010) and PET (78%; p = 0.004). Lastly, the area under the receiver operating characteristics curve of QFR, in the overall sample (0.94) and among vessels with an intermediate lesion (0.90) was higher than SPECT (0.63 and 0.61; p < 0.001 for both) and PET (0.82; p < 0.001 and 0.77; p = 0.002), respectively.CONCLUSIONS In this head-to-head comparative study, QFR exhibited a higher diagnostic value for detecting FFRdefined significant CAD compared with perfusion imaging by SPECT or PET. (J Am Coll Cardiol Img 2020;13:1976-85) (c) 2020 by the American College of Cardiology Foundation.Cardiovascular Aspects of Radiolog

    Functional stress imaging to predict abnormal coronary fractional flow reserve: the PACIFIC 2 study

    Get PDF
    AimsThe diagnostic performance of non-invasive imaging in patients with prior coronary artery disease (CAD) has not been tested in prospective head-to-head comparative studies. The aim of this study was to compare the diagnostic performance of qualitative single-photon emission computed tomography (SPECT), quantitative positron emission tomography (PET), and qualitative magnetic resonance imaging (MRI) in patients with a prior myocardial infarction (MI) or percutaneous coronary intervention (PCI).Methods and resultsIn this prospective clinical study, all patients with prior MI and/or PCI and new symptoms of ischaemic CAD underwent 99mTc-tetrofosmin SPECT, [15O]H2O PET, and MRI, followed by invasive coronary angiography with fractional flow reserve (FFR) in all coronary arteries. All modalities were interpreted by core laboratories. Haemodynamically significant CAD was defined by at least one coronary artery with an FFR ≤0.80. Among the 189 enrolled patients, 63% had significant CAD. Sensitivity was 67% (95% confidence interval 58–76%) for SPECT, 81% (72–87%) for PET, and 66% (56–75%) for MRI. Specificity was 61% (48–72%) for SPECT, 65% (53–76%) for PET, and 62% (49–74%) for MRI. Sensitivity of PET was higher than SPECT (P = 0.016) and MRI (P = 0.014), whereas specificity did not differ among the modalities. Diagnostic accuracy for PET (75%, 68–81%) did not statistically differ from SPECT (65%, 58–72%, P = 0.03) and MRI (64%, 57–72%, P = 0.052). Using FFR ConclusionIn this prospective head-to-head comparative study, SPECT, PET, and MRI did not show a significantly different accuracy for diagnosing FFR defined significant CAD in patients with prior PCI and/or MI. Overall diagnostic performances, however, were discouraging and the additive value of non-invasive imaging in this high-risk population is questionable.</p

    Age- and sex-related features of atherosclerosis from coronary computed tomography angiography in patients prior to acute coronary syndrome: results from the ICONIC study

    Get PDF
    Aims Although there is increasing evidence supporting coronary atherosclerosis evaluation by coronary computed tomography angiography (CCTA), no data are available on age and sex differences for quantitative plaque features. The aim of this study was to investigate sex and age differences in both qualitative and quantitative atherosclerotic features from CCTA prior to acute coronary syndrome (ACS).Methods and results Within the ICONIC study, in which 234 patients with subsequent ACS were propensity matched 1:1 with 234 non-event controls, our current subanalysis included only the ACS cases. Both qualitative and quantitative advance plaque analysis by CCTA were performed by a core laboratory. In 129 cases, culprit lesions identified by invasive coronary angiography at the time of ACS were co-registered to baseline CCTA precursor lesions. The study population was then divided into subgroups according to sex and age (<65 vs. = 65 years old) for analysis. Older patients had higher total plaque volume than younger patients. Within specific subtypes of plaque volume, however, only calcified plaque volume was higher in older patients (135.9 +/- 163.7 vs. 63.8 +/- 94.2 mm(3), P < 0.0001, respectively). Although no sex-related differences were recorded for calcified plaque volume, females had lower fibrous and fibrofatty plaque volume than males (Fibrofatty volume 29.6 +/- 44.1 vs. 75.3 +/- 98.6 mm(3), P = 0.0001, respectively). No sex-related differences in the prevalence of qualitative high-risk plaque features were found, even after separate analyses considering age were performed.Conclusion Our data underline the importance of age- and sex-related differences in coronary atherosclerosis presentation, which should be considered during CCTA-based atherosclerosis quantification.Cardiolog

    Computed tomography myocardial perfusion vs (15)O-water positron emission tomography and fractional flow reserve

    Get PDF
    Objectives: Computed tomography (CT) can perform comprehensive cardiac imaging. We compared CT coronary angiography (CTCA) and CT myocardial perfusion (CTP) with ¹⁵O-water positron emission tomography (PET) and invasive coronary angiography (ICA) with fractional flow reserve (FFR). Methods: 51 patients (63 (61–65) years, 80 % male) with known/suspected coronary artery disease (CAD) underwent 320-multidetector CTCA followed by “snapshot” adenosine stress CTP. Of these 22 underwent PET and 47 ICA/FFR. Obstructive CAD was defined as CTCA stenosis >50 % and CTP hypoperfusion, ICA stenosis >70 % or FFR <0.80. Results: PET hyperaemic myocardial blood flow (MBF) was lower in obstructive than non-obstructive territories defined by ICA/FFR (1.76 (1.32–2.20) vs 3.11 (2.44–3.79) mL/(g/min), P < 0.001) and CTCA/CTP (1.76 (1.32–2.20) vs 3.12 (2.44–3.79) mL/(g/min), P < 0.001). Baseline and hyperaemic CT attenuation density was lower in obstructive than non-obstructive territories (73 (71–76) vs 86 (84–88) HU, P < 0.001 and 101 (96–106) vs 111 (107–114) HU, P 0.001). PET hyperaemic MBF corrected for rate pressure product correlated with CT attenuation density (r = 0.579, P < 0.001). There was excellent per-patient sensitivity (96 %), specificity (85 %), negative predictive value (90 %) and positive predictive value (94 %) for CTCA/CTP vs ICA/FFR. Conclusion: CT myocardial attenuation density correlates with ¹⁵O-water PET MBF. CTCA and CTP can accurately identify obstructive CAD. Key Points: •CT myocardial perfusion can aid the assessment of suspected coronary artery disease. • CT attenuation density from “snapshot” imaging is a marker of myocardial perfusion. • CT myocardial attenuation density correlates with ¹⁵O-water PET myocardial blood flow. • CT attenuation density is lower in obstructive territories defined by invasive angiography. • Diagnostic accuracy of CTCA+CTP is comparable to invasive angiography + fractional flow reserve
    corecore