8 research outputs found

    Antibodies Against Three Novel Peptides in Early Axial Spondyloarthritis Patients From Two Independent Cohorts

    No full text
    Objective This study was undertaken to identify novel autoantibodies in axial spondyloarthritis (SpA) and determine their diagnostic potential in patients with early axial SpA and controls from 2 independent cohorts. Methods An axial SpA complementary DNA phage display library was used to screen for novel IgG antibodies in plasma from patients with early axial SpA. The presence of these antibodies against novel peptides (i.e., peptides identified in an early axial SpA cohort from Hasselt University, designated UH-axSpA) was determined by enzyme-linked immunosorbent assay in 76 patients with early axial SpA, 75 controls with nonspecific chronic low back pain, 60 patients with rheumatoid arthritis, and 94 healthy controls from the UH cohort. Antibody reactivity to these novel peptides was further validated in 174 patients with axial SpA (of whom 79 had early axial SpA) from the University Hospitals Leuven (Bio)SPAR (Spondyloarthritis [Biologics]) cohort. Results We identified antibodies to 9 novel UH-axSpA peptides, corresponding to randomly formed peptides and to a novel axial SpA autoantigen, double homeobox protein 4. Antibodies to 3 UH-axSpA peptides with the highest positive likelihood ratio (LR) for a diagnosis of axial SpA were present in significantly more patients with early axial SpA from the UH and (Bio)SPAR cohorts (14.2% [22/155]) compared to controls with chronic low back pain (5% [4/75]), resulting in 95% specificity. The positive LR for confirming axial SpA using antibodies to these 3 UH-axSpA peptides was 2.7, which is higher than the LR obtained with the currently used laboratory marker C-reactive protein. Testing for antibodies to these 3 UH-axSpA peptides in patients with chronic low back pain increased the posttest probability of a diagnosis of axial SpA from 79% to 91%. Conclusion Antibodies to 3 UH-axSpA peptides could provide a novel tool in the diagnosis of a subset of axial SpA patients

    Antibodies Against Three Novel Peptides in Early Axial Spondyloarthritis Patients From Two Independent Cohorts

    No full text
    OBJECTIVE: This study was undertaken to identify novel autoantibodies in axial spondyloarthritis (SpA) and determine their diagnostic potential in patients with early axial SpA and controls from 2 independent cohorts. METHODS: An axial SpA complementary DNA phage display library was used to screen for novel IgG antibodies in plasma from patients with early axial SpA. The presence of these antibodies against novel peptides (i.e., peptides identified in an early axial SpA cohort from Hasselt University, designated UH-axSpA) was determined by enzyme-linked immunosorbent assay in 76 patients with early axial SpA, 75 controls with nonspecific chronic low back pain, 60 patients with rheumatoid arthritis, and 94 healthy controls from the UH cohort. Antibody reactivity to these novel peptides was further validated in 174 patients with axial SpA (of whom 79 had early axial SpA) from the University Hospitals Leuven (Bio)SPAR (Spondyloarthritis [Biologics]) cohort. RESULTS: We identified antibodies to 9 novel UH-axSpA peptides, corresponding to randomly formed peptides and to a novel axial SpA autoantigen, double homeobox protein 4. Antibodies to 3 UH-axSpA peptides with the highest positive likelihood ratio (LR) for a diagnosis of axial SpA were present in significantly more patients with early axial SpA from the UH and (Bio)SPAR cohorts (14.2% [22/155]) compared to controls with chronic low back pain (5% [4/75]), resulting in 95% specificity. The positive LR for confirming axial SpA using antibodies to these 3 UH-axSpA peptides was 2.7, which is higher than the LR obtained with the currently used laboratory marker C-reactive protein. Testing for antibodies to these 3 UH-axSpA peptides in patients with chronic low back pain increased the posttest probability of a diagnosis of axial SpA from 79% to 91%. CONCLUSION: Antibodies to 3 UH-axSpA peptides could provide a novel tool in the diagnosis of a subset of axial SpA patients.status: publishe

    Antibodies Against Three Novel Peptides in Early Axial Spondyloarthritis Patients From Two Independent Cohorts

    No full text
    Objective This study was undertaken to identify novel autoantibodies in axial spondyloarthritis (SpA) and determine their diagnostic potential in patients with early axial SpA and controls from 2 independent cohorts. Methods An axial SpA complementary DNA phage display library was used to screen for novel IgG antibodies in plasma from patients with early axial SpA. The presence of these antibodies against novel peptides (i.e., peptides identified in an early axial SpA cohort from Hasselt University, designated UH-axSpA) was determined by enzyme-linked immunosorbent assay in 76 patients with early axial SpA, 75 controls with nonspecific chronic low back pain, 60 patients with rheumatoid arthritis, and 94 healthy controls from the UH cohort. Antibody reactivity to these novel peptides was further validated in 174 patients with axial SpA (of whom 79 had early axial SpA) from the University Hospitals Leuven (Bio)SPAR (Spondyloarthritis [Biologics]) cohort. Results We identified antibodies to 9 novel UH-axSpA peptides, corresponding to randomly formed peptides and to a novel axial SpA autoantigen, double homeobox protein 4. Antibodies to 3 UH-axSpA peptides with the highest positive likelihood ratio (LR) for a diagnosis of axial SpA were present in significantly more patients with early axial SpA from the UH and (Bio)SPAR cohorts (14.2% [22/155]) compared to controls with chronic low back pain (5% [4/75]), resulting in 95% specificity. The positive LR for confirming axial SpA using antibodies to these 3 UH-axSpA peptides was 2.7, which is higher than the LR obtained with the currently used laboratory marker C-reactive protein. Testing for antibodies to these 3 UH-axSpA peptides in patients with chronic low back pain increased the posttest probability of a diagnosis of axial SpA from 79% to 91%. Conclusion Antibodies to 3 UH-axSpA peptides could provide a novel tool in the diagnosis of a subset of axial SpA patients

    Antibodies Against Three Novel Peptides in Early Axial Spondyloarthritis Patients From Two Independent Cohorts

    No full text
    Objective This study was undertaken to identify novel autoantibodies in axial spondyloarthritis (SpA) and determine their diagnostic potential in patients with early axial SpA and controls from 2 independent cohorts. Methods An axial SpA complementary DNA phage display library was used to screen for novel IgG antibodies in plasma from patients with early axial SpA. The presence of these antibodies against novel peptides (i.e., peptides identified in an early axial SpA cohort from Hasselt University, designated UH-axSpA) was determined by enzyme-linked immunosorbent assay in 76 patients with early axial SpA, 75 controls with nonspecific chronic low back pain, 60 patients with rheumatoid arthritis, and 94 healthy controls from the UH cohort. Antibody reactivity to these novel peptides was further validated in 174 patients with axial SpA (of whom 79 had early axial SpA) from the University Hospitals Leuven (Bio)SPAR (Spondyloarthritis [Biologics]) cohort. Results We identified antibodies to 9 novel UH-axSpA peptides, corresponding to randomly formed peptides and to a novel axial SpA autoantigen, double homeobox protein 4. Antibodies to 3 UH-axSpA peptides with the highest positive likelihood ratio (LR) for a diagnosis of axial SpA were present in significantly more patients with early axial SpA from the UH and (Bio)SPAR cohorts (14.2% [22/155]) compared to controls with chronic low back pain (5% [4/75]), resulting in 95% specificity. The positive LR for confirming axial SpA using antibodies to these 3 UH-axSpA peptides was 2.7, which is higher than the LR obtained with the currently used laboratory marker C-reactive protein. Testing for antibodies to these 3 UH-axSpA peptides in patients with chronic low back pain increased the posttest probability of a diagnosis of axial SpA from 79% to 91%. Conclusion Antibodies to 3 UH-axSpA peptides could provide a novel tool in the diagnosis of a subset of axial SpA patients

    Radiotherapy Combined with the Immunocytokine L19-IL2 Provides Long-lasting Antitumor Effects

    Get PDF
    Purpose: Radiotherapy modifies the tumor microenvironment and causes the release of tumor antigens, which can enhance the effect of immunotherapy. L19 targets the extra domain B (ED-B) of fibronectin, a marker for tumor neoangiogenesis, and can be used as immunocytokine when coupled to IL2. We hypothesize that radiotherapy in combination with L19-IL2 provides an enhanced antitumor effect, which is dependent on ED-B expression. Experimental Design: Mice were injected with syngeneic C51 colon carcinoma, Lewis lung carcinoma (LLC), or 4T1 mammary carcinoma cells. Tumor growth delay, underlying immunologic parameters, and treatment toxicity were evaluated after single-dose local tumor irradiation and systemic administration of L19IL2 or equimolar controls. Results: ED-B expression was high, intermediate, and low for C51, LLC, and 4T1, respectively. The combination therapy showed (i) a long-lasting synergistic effect for the C51 model with 75% of tumors being cured, (ii) an additive effect for the LLC model, and (iii) no effect for the 4T1 model. The combination treatment resulted in a significantly increased cytotoxic (CD8(+)) T-cell population for both C51 and LLC. Depletion of CD8(+) T cells abolished the benefit of the combination therapy. Conclusions: These data provide the first evidence for an increased therapeutic potential by combining radiotherapy with L19-IL2 in ED-B-positive tumors. This new opportunity in cancer treatment will be investigated in a phase I clinical study for patients with an oligometastatic solid tumor (NCT02086721). An animation summarizing our results is available at https://www.youtube.com/watch?v=xHbwQuCTkRc

    The Clinical Features of Sarcoidosis: A Comprehensive Review

    No full text
    corecore