25 research outputs found

    Bortezomib maintenance after R-CHOP, cytarabine and autologous stem cell transplantation in newly diagnosed patients with mantle cell lymphoma, results of a randomised phase II HOVON trial

    Get PDF
    Rituximab-containing induction followed by autologous stem cell transplantation (ASCT) is the standard first-line treatment for young mantle cell lymphoma patients. However, most patients relapse after ASCT. We investigated in a randomised phase II study the outcome of a chemo-immuno regimen and ASCT with or without maintenance therapy with bortezomib. Induction consisted of three cycles R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone), two cycles high-dose cytarabine, BEAM (carmustine, etoposide, cytarabine, melphalan) and ASCT. Patients responding were randomised between bortezomib maintenance (1·3 mg/m2 intravenously once every 2 weeks, for 2 years) and observation. Of 135 eligible patients, 115 (85%) proceeded to ASCT, 60 (44%) were randomised. With a median follow-up of 77·5 months for patients still alive, 5-year event-free survival (EFS) was 51% (95% CI 42–59%); 5-year overall survival (OS) was 73% (95% CI 65–80%). The median follow-up of randomised patients still alive was 71·5 months. Patients with bortezomib maintenance had a 5-year EFS of 63% (95% CI 44–78%) and 5-year OS of 90% (95% CI 72–97%). The patients randomised to observation had 5-year PFS of 60% (95% CI, 40–75%) and OS of 90% (95% CI 72–97%). In conclusion, in this phase II study we found no indication of a positive effect of bortezomib maintenance after ASCT

    Age and sex associate with outcome in older AML and high risk MDS patients treated with 10-day decitabine

    Get PDF
    Treatment choice according to the individual conditions remains challenging, particularly in older patients with acute myeloid leukemia (AML) and high risk myelodysplastic syndrome (MDS). The impact of performance status, comorbidities, and physical functioning on survival is not well defined for patients treated with hypomethylating agents. Here we describe the impact of performance status (14% ECOG performance status 2), comorbidity (40% HCT-comorbidity index ≥ 2), and physical functioning (41% short physical performance battery  76 years was significantly associated with reduced OS (HR 1.58; p = 0.043) and female sex was associated with superior OS (HR 0.62; p = 0.06). We further compared the genetic profiles of these subgroups. This revealed comparable mutational profiles in patients younger and older than 76 years, but, interestingly, revealed significantly more prevalent mutated ASXL1, STAG2, and U2AF1 in male compared to female patients. In this cohort of older patients treated with decitabine age and sex, but not comorbidities, physical functioning or cytogenetic risk were associated with overall survival

    Dysplasia and PNH-type cells in bone marrow aspirates of myelodysplastic syndromes

    No full text
    Background: Flow cytometry is increasingly applied in cytopenic patients suspected for myelodysplastic syndromes (MDS). Analysis includes evaluation of antigen expression patterns in granulocytes of which, for example, partial lack of CD16 may indicate dysplasia, but presence of paroxysmal nocturnal hemoglobinuria (PNH)-type cells should be considered. However, diagnostic bone marrow (BM) samples hamper PNH analysis because immature stages in the granulo-/monocytic compartment lack expression of certain glycophosphatidyl-inositol-anchored proteins. In this prospective study, we evaluated the presence of PNH-type cells in BM next to aberrancies from routine MDS immunophenotyping. Methods: We combined antibodies defining maturation trajectories with FLAER. Validation of the designed method against routine PNH analysis and parallel analysis of BM and blood samples revealed similar results (granulocytes: Wilcoxon p = 0.25 and p = 0.82, respectively). We analyzed BM samples from 134 MDS, 17 chronic myelomonocytic leukemia, 15 aplastic anemia (AA), 1 PNH, 51 non-clonal cytopenic controls, and 12 normal controls. Results: Most AA/PNH-BM samples showed clear PNH clones: median 1.1% (0%–35%); CD16 loss on mature neutrophils paralleled PNH-clone sizes. In MDS-BM, only 3.7% of cases showed ≥0.1% PNH-type cells, whereas partial CD16 loss was more frequent and abundant. Conclusions: Our findings confirm that dysplastic features in MDS-BM may point to presence of PNH-type cells, though only few cases displayed FLAER-negative cells. We showed that identification of these cells in the granulocyte compartment of BM specimen is feasible, but—according to international guidelines—results need to be confirmed in peripheral blood

    Dysplasia and PNH-type cells in bone marrow aspirates of myelodysplastic syndromes

    Get PDF
    Background : Flow cytometry is increasingly applied in cytopenic patients suspected for myelodysplastic syndromes (MDS). Analysis includes evaluation of antigen expression patterns in granulocytes of which, for example, partial lack of CD16 may indicate dysplasia, but presence of paroxysmal nocturnal hemoglobinuria (PNH)-type cells should be considered. However, diagnostic bone marrow (BM) samples hamper PNH analysis because immature stages in the granulo-/monocytic compartment lack expression of certain glycophosphatidyl-inositol-anchored proteins. In this prospective study, we evaluated the presence of PNH-type cells in BM next to aberrancies from routine MDS immunophenotyping. Methods : We combined antibodies defining maturation trajectories with FLAER. Validation of the designed method against routine PNH analysis and parallel analysis of BM and blood samples revealed similar results (granulocytes: Wilcoxon p = 0.25 and p = 0.82, respectively). We analyzed BM samples from 134 MDS, 17 chronic myelomonocytic leukemia, 15 aplastic anemia (AA), 1 PNH, 51 non-clonal cytopenic controls, and 12 normal controls. Results : Most AA/PNH-BM samples showed clear PNH clones: median 1.1% (0%–35%); CD16 loss on mature neutrophils paralleled PNH-clone sizes. In MDS-BM, only 3.7% of cases showed ≥0.1% PNH-type cells, whereas partial CD16 loss was more frequent and abundant. Conclusions : Our findings confirm that dysplastic features in MDS-BM may point to presence of PNH-type cells, though only few cases displayed FLAER-negative cells. We showed that identification of these cells in the granulocyte compartment of BM specimen is feasible, but—according to international guidelines—results need to be confirmed in peripheral blood

    TCF4 promotes erythroid development

    Get PDF
    Transcription factor 4 (TCF4) is implicated in lymphoid cell differentiation and its expression predicts outcome in acute myeloid leukemia. Here, we investigated the role of TCF4 in myelopoiesis. Overexpression of TCF4 (TCF4(OE)) in umbilical cord blood (UCB) cells resulted in a twofold increase in erythroid colony forming units (CFU-Es), whereas knock-down (KD) of TCF4 (TCF4(KD) ) caused a dramatic decrease in the number of erythroid colonies. In megakaryocyte CFUs (CFU-MKs), both TCF4(KD) and TCF4(OE) inhibited MK colony formation. TCF4 did not have an impact on granulocyte, macrophage, or granulocyte-macrophage colonies or on the proportion of MK-erythrocyte progenitors (MEPs) in culture. Because TCF4 affects erythroid/MK development and these lineages are affected in myelodysplastic syndrome (MDS), we studied the impact of TCF4 expression in this disease. MDS patients with high (>= median) TCF4 mRNA expression had higher hemoglobin (Hb) levels than MDS patients with low TCF4 expression (mean 9.0 vs. 8.55 g/dL, p = 0.02). Overall, TCF4 mRNA expression was lower in hematopoietic stem cells, common myeloid progenitors, and MEPs from MDS patients, but not in granulocyte-macrophage progenitors, compared with healthy controls. Therefore, in cell fractions with erythroid lineage potential, TCF4 is expressed less in MDS patients than in healthy controls. This correlates with the low overall Hb levels seen in MDS patients compared with healthy individuals and is consistent with the positive impact of TCF4 on erythroid development while not having impact on white colonies. These results indicate a role for TCF4 as a novel factor in erythroid-megakaryocytic differentiation

    Distinct bone marrow immunophenotypic features define the splicing factor 3B subunit 1 (SF3B1)-mutant myelodysplastic syndromes subtype

    No full text
    Splicing factor 3B subunit 1 (SF3B1) mutations define a distinct myelodysplastic syndromes (MDS) patient group with a relatively favourable disease course and high response rates to luspatercept. Few data are available on bone marrow phenotype beyond ring sideroblasts in this subgroup of patients with MDS. In the present study, we identified immunophenotypic erythroid, myelomonocyte and progenitor features associated with SF3B1 mutations. In addition, we illustrate that SF3B1-mutation type is associated with distinct immunophenotypic features, and show the impact of co-occurrence of a SF3B1 mutation and a deletion of chromosome 5q on bone marrow immunophenotype. These genotype–phenotype associations and phenotypic subtypes within SF3B1-MDS provide leads that may further refine prognostication and therapeutic strategies for this particular MDS subgroup
    corecore