2,176 research outputs found

    Design of High-Performance Lead-Free Quaternary Antiperovskites for Photovoltaics via Ion Type Inversion and Anion Ordering.

    Full text link
    peer reviewedThe emergence of halide double perovskites significantly increases the compositional space for lead-free and air-stable photovoltaic absorbers compared to halide perovskites. Nevertheless, most halide double perovskites exhibit oversized band gaps (>1.9 eV) or dipole-forbidden optical transition, which are unfavorable for efficient single-junction solar cell applications. The current device performance of halide double perovskite is still inferior to that of lead-based halide perovskites, such as CH3NH3PbI3 (MAPbI3). Here, by ion type inversion and anion ordering on perovskite lattice sites, two new classes of pnictogen-based quaternary antiperovskites with the formula of X6B2AA' and X6BB'A2 are designed. Phase stability and tunable band gaps in these quaternary antiperovskites are demonstrated based on first-principles calculations. Further photovoltaic-functionality-directed screening of these materials leads to the discovery of 5 stable compounds (Ca6N2AsSb, Ca6N2PSb, Sr6N2AsSb, Sr6N2PSb, and Ca6NPSb2) with suitable direct band gaps, small carrier effective masses and low exciton binding energies, and dipole-allowed strong optical absorption, which are favorable properties for a photovoltaic absorber material. The calculated theoretical maximum solar cell efficiencies based on these five compounds are all larger than 29%, comparable to or even higher than that of the MAPbI3 based solar cell. Our work reveals the huge potential of quaternary antiperovskites in the optoelectronic field and provides a new strategy to design lead-free and air-stable perovskite-based photovoltaic absorber materials

    Radiosensitization and growth inhibition of cancer cells mediated by an scFv antibody gene against DNA-PKcs in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is commonly occurred in cancers and causes radioresistance and poor prognosis. In present study, the single-chain variable antibody fragments (scFv) targeting DNA-PKcs was developed for the application of radiosensitization in vitro and in vivo. A humanized semisynthetic scFv library and the phage-display antibodies technology were employed to screen DNA-PKcs scFv antibody.</p> <p>Methods</p> <p>DNA-PKcs epitopes were predicted and cloned. A humanized semisynthetic scFv library and the phage-display antibodies technology were employed to screen DNA-PKcs scFv antibody. DNA damage repair was analyzed by comet assay and immunofluorescence detection of γH2AX foci. The radiosensitization in vivo was determined on Balb/c athymic mice transplanted tumours of HeLa cells.</p> <p>Results</p> <p>Four epitopes of DNA-PKcs have been predicted and expressed as the antigens, and a specific human anti-DNA-PKcs scFv antibody gene, anti-DPK3-scFv, was obtained by screening the phage antibody library using the DNA-PKcs peptide DPK3. The specificity of anti-DPK3-scFv was verified, <it>in vitro</it>. Transfection of HeLa cells with the anti-DPK3-scFv gene resulted in an increased sensitivity to IR, decreased repair capability of DNA double-strand breaks (DSB) detected by comet assay and immunofluorescence detection of γH2AX foci. Moreover, the kinase activity of DNA-PKcs was inhibited by anti-DPK3-scFv, which was displayed by the decreased phosphorylation levels of its target Akt/S473 and the autophosphorylation of DNA-PKcs on S2056 induced by radiation. Measurement of the growth and apoptosis rates showed that anti-DPK3-scFv enhanced the sensitivity of tumours transplanted in Balb/c athymic mice to radiation therapy.</p> <p>Conclusion</p> <p>The antiproliferation and radiosensitizing effects of anti-DPK3-scFv via targeting DNA-PKcs make it very appealing for the development as a novel biological radiosensitizer for cancer therapeutic potential.</p

    Risk Factors in Predicting Prognosis of Neonatal Bacterial Meningitis—A Systematic Review

    Get PDF
    Background: Neonatal bacterial meningitis is a severe infection with high mortality and morbidity. It is necessary to identify factors associated with a high risk of a poor prognosis so that we can prevent them with more appropriate treatments. This study was performed to summarize the prognostic factors known to predict adverse outcomes in neonatal bacterial meningitis.Methods: The Medline/PubMed, Cochrane Library and Embase databases were searched for studies of prognostic risk factors in neonates with bacterial meningitis. Studies published from the initiation of the database to April 30th, 2017 were included. The quality of cohort studies was assessed by the Newcastle-Ottawa Scale (NOS). The quality of cross-section studies was assessed by the Agency for Healthcare Research and Quality (AHRQ) scale. Each prognostic factor known to cause adverse outcomes is summarized.Results: Sixteen studies were identified, including 7 cohort studies and 9 cross section studies. Seizure and high protein levels in the cerebrospinal fluid (CSF) predict a poor prognosis in this disease. Coma, the need for ventilation support, and leukopenia also had some value for predicting poor prognoses. A bulging anterior fontanelle was valuable for predicting mortality. Low CSF glucose levels, thrombocytopenia, gestational age (GA) &lt; 37 weeks and an altered sensorium were correlated with a poor prognosis. A birth weight &lt; 2500 g, early onset meningitis and positive CSF cultures were correlated with mortality.Conclusions: This study provides a preliminary exploration of prognostic factors in neonatal bacterial meningitis and thereby fills some of the gaps in the study of prognoses in this disease. These prognostic factors can be used to predict and estimate outcomes in neonatal bacterial meningitis. Without a meta-analysis, the reliability of these factors cannot be assured. In addition, these results emphasize that there is an urgent need for a standardized protocol for follow-up and well-designed prognostic studies in neonatal bacterial meningitis

    The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys

    Full text link
    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the LAMOST during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m telescope, XSTPS optical, and WISE near infrared photometric data. We present 509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new quasars discovered in an area of ~100 sq. deg that covers the central region and the southeastern halo of M31 in the 2010 commissioning datasets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5 deg of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute PMs of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte

    Prospects for detection rate of very-high-energy {\gamma}-ray emissions from short {\gamma}-ray bursts with the HADAR experiment

    Full text link
    The observation of short gamma ray bursts (SGRBs) in the TeV energy range plays an important role in understanding the radiation mechanism and probing new areas of physics such as Lorentz invariance violation. However, no SGRB has been observed in this energy range due to the short duration of SGRBs and the weakness of current experiments. New experiments with new technology are required to detect sub-TeV SGRBs. In this work, we observe the very high energy (VHE) γ\gamma-ray emissions from SGRBs and calculate the annual detection rate with the High Altitude Detection of Astronomical Radiation HADAR (HADAR) experiment. First, a set of pseudo-SGRB samples is generated and checked using the observations of Fermi-GBM, Fermi-LAT, and SWIFT measurements. The annual detection rate is calculated from these SGRB samples based on the performance of the HADAR instrument. As a result, the HADAR experiment can detect 0.5 SGRB per year if the spectral break-off of γ\gamma-rays caused by the internal absorption is larger than 100 GeV. For a GRB09010-like GRB in HADAR's view, it should be possible to detect approximately 2000 photons considering the internal absorption. With a time delay assumption due to the Lorentz invariance violation effects, a simulated light curve of GRB090510 has evident energy dependence. We hope that the HADAR experiment can perform the SGRB observations and test our calculations in the future

    Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ginsenoside Rg3, a saponin extracted from ginseng, inhibits angiogenesis. The combination of low-dose chemotherapy and anti-angiogenic inhibitors suppresses growth of experimental tumors more effectively than conventional therapy or anti-angiogenic agent alone. The present study was designed to evaluate the efficacy of low-dose gemcitabine combined with ginsenoside Rg3 on angiogenesis and growth of established Lewis lung carcinoma in mice.</p> <p>Methods</p> <p>C57L/6 mice implanted with Lewis lung carcinoma were randomized into the control, ginsenoside Rg3, gemcitabine and combination group. The quality of life and survival of mice were recorded. Tumor volume, inhibitive rate and necrosis rate were estimated. Necrosis of tumor and signals of blood flow as well as dynamic parameters of arterial blood flow in tumors such as peak systolic velocity (PSV) and resistive index (RI) were detected by color Doppler ultrasound. In addition, expression of vascular endothelial cell growth factor (VEGF) and CD31 were observed by immunohistochemstry, and microvessel density (MVD) of the tumor tissues was assessed by CD31 immunohistochemical analysis.</p> <p>Results</p> <p>Quality of life of mice in the ginsenoside Rg3 and combination group were better than in the control and gemcitabine group. Combined therapy with ginsenoside Rg3 and gemcitabine not only enhanced efficacy on suppression of tumor growth and prolongation of the survival, but also increased necrosis rate of tumor significantly. In addition, the combination treatment could obviously decrease VEGF expression and MVD as well as signals of blood flow and PSV in tumors.</p> <p>Conclusion</p> <p>Ginsenoside Rg3 combined with gemcitabine may significantly inhibit angiogenesis and growth of lung cancer and improve survival and quality of life of tumor-bearing mice. The combination of chemotherapy and anti-angiogenic drugs may be an innovative and promising therapeutic strategy in the experimental treatment of human lung cancer.</p
    corecore