13 research outputs found

    Genetic and epigenetic determinants of B-cell lymphoma evolution

    No full text
    The success of targeted therapies fostered the development of increasingly specific and effective therapeutics for B-cell malignancies. However, cancer plasticity facilitates disease relapse, whereby intratumoral heterogeneity fuels tumor evolution into a more aggressive and resistant form. Understanding cancer heterogeneity and the evolutionary processes underlying disease relapse is key for overcoming this limitation of current treatment strategies. In the present review, we delineate the current understanding of cancer evolution and the advances in both genetic and epigenetic fields, with a focus on non-Hodgkin B-cell lymphomas.Fil: Izzo, Franco. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; Argentina. New York Genome Center; Estados Unidos. Weill Cornell Medicine. Sandra and Edward Meyer Cancer Center; Estados UnidosFil: Landau, Dan Avi. Weill Cornell Medicine. Sandra and Edward Meyer Cancer Center; Estados Unidos. New York Genome Center; Estados Unido

    Locally Disordered Methylation Forms the Basis of Intratumor Methylome Variation in Chronic Lymphocytic Leukemia

    Get PDF
    Intratumoral heterogeneity plays a critical role in tumor evolution. To define the contribution of DNA methylation to heterogeneity within tumors, we performed genome-scale bisulfite sequencing of 104 primary chronic lymphocytic leukemias (CLLs). Compared with 26 normal B cell samples, CLLs consistently displayed higher intrasample variability of DNA methylation patterns across the genome, which appears to arise from stochastically disordered methylation in malignant cells. Transcriptome analysis of bulk and single CLL cells revealed that methylation disorder was linked to low-level expression. Disordered methylation was further associated with adverse clinical outcome. We therefore propose that disordered methylation plays a similar role to that of genetic instability, enhancing the ability of cancer cells to search for superior evolutionary trajectories.Stem Cell and Regenerative Biolog

    Mutational heterogeneity in cancer and the search for new cancer-associated genes

    Get PDF
    Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer
    corecore