8,080 research outputs found
Plancherel-Rotach asymptotic expansion for some polynomials from indeterminate moment problems
We study the Plancherel--Rotach asymptotics of four families of orthogonal
polynomials, the Chen--Ismail polynomials, the Berg-Letessier-Valent
polynomials, the Conrad--Flajolet polynomials I and II. All these polynomials
arise in indeterminate moment problems and three of them are birth and death
process polynomials with cubic or quartic rates. We employ a difference
equation asymptotic technique due to Z. Wang and R. Wong. Our analysis leads to
a conjecture about large degree behavior of polynomials orthogonal with respect
to solutions of indeterminate moment problems.Comment: 34 pages, typos corrected and references update
Uniform Asymptotics of Orthogonal Polynomials Arising from Coherent States
In this paper, we study a family of orthogonal polynomials
arising from nonlinear coherent states in quantum optics. Based on the
three-term recurrence relation only, we obtain a uniform asymptotic expansion
of as the polynomial degree tends to infinity. Our asymptotic
results suggest that the weight function associated with the polynomials has an
unusual singularity, which has never appeared for orthogonal polynomials in the
Askey scheme. Our main technique is the Wang and Wong's difference equation
method. In addition, the limiting zero distribution of the polynomials
is provided
- …
