24 research outputs found

    On the Possibility of Designing an Advanced Sensor with Particle Sizing Using Dynamic Light Scattering Time Series Spectral Entropy and Artificial Neural Network

    Get PDF
    LBUS‐IRG‐2019‐05 LBUS‐IRG‐2020‐06Dynamic Light Scattering is a well-established technique used in particle sizing. An alternative procedure for Dynamic Light Scattering time series processing based on spectral entropy computation and Artificial Neural Networks is described. An error analysis of the proposed method was carried out and the results on both the simulated and on the experimental DLS time series are presented in detail. The results reveal the possibility of designing an advanced sensor capable of detecting particles with a size bigger than a threshold using this alternative for processing the DLS time series.publishersversionpublishe

    Reversible Martensitic Phase Transition in Yttrium-Stabilized ZrO2 Nanopowders by Adsorption of Water

    Get PDF
    Funding: This work was supported by H2020/MSCA/RISE/SSHARE number 871284 project and the RO-JINR Grant No. 367/2021 item 27 and RO-JINR Projects № 366/2021 items 57, 61, 83, 85. Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.The present study was aimed at revealing the influence of the mechanical stress induced by water molecule adsorption on the composition of crystalline phases in the ZrO2 + 3 mol% Y2O3-nanoparticles. Three basic methods were used to determine the phase transition: Neutron diffraction, Raman microspectroscopic scanning, and X-ray diffraction. The fact of reversible phase-structural β → α transformation and the simultaneous presence of two polymorphic structural modifications (β is the phase of the tetragonal syngony and α of monoclinic syngony in nanosized particles (9 nm)) under normal physical conditions was established by these methods. An assumption was made regarding the connection of the physical mechanism of transformation of the extremely nonequilibrium surface of nanoparticles with electronic exchange of the material of the near-surface layer of nanoparticles with the adsorption layer through donor-acceptor interaction. The principal possibility of creating direct-acting hydroelectric converters based on nanoscale YSZ (Yttria-Stabilized Zirconia) systems due to the reversible character of the considered effect was shown.publishersversionpublishe

    A Study of Milk Particles Size Variation with pH Change using Dynamic Light Scattering

    No full text
    A very simple experimental setup for a Dynamic Light Scattering measurement was used to measure the average size of the milk proteins in aqueous suspensions at 20 °C. The PH of the suspensions was adjusted using Calcium lactate, in its most common form of pentahydrate C6H10CaO6•5H2O. The mean size variation of the suspended particles in time has been monitored and reveals a fast increase over a time interval of less than ten of seconds

    On the Possibility of Designing an Advanced Sensor with Particle Sizing Using Dynamic Light Scattering Time Series Spectral Entropy and Artificial Neural Network

    No full text
    Dynamic Light Scattering is a well-established technique used in particle sizing. An alternative procedure for Dynamic Light Scattering time series processing based on spectral entropy computation and Artificial Neural Networks is described. An error analysis of the proposed method was carried out and the results on both the simulated and on the experimental DLS time series are presented in detail. The results reveal the possibility of designing an advanced sensor capable of detecting particles with a size bigger than a threshold using this alternative for processing the DLS time series

    >

    No full text

    >

    No full text

    An Advanced Sensor for Particles in Gases Using Dynamic Light Scattering in Air as Solvent

    No full text
    Dynamic Light Scattering is a technique currently used to assess the particle size and size distribution by processing the scattered light intensity. Typically, the particles to be investigated are suspended in a liquid solvent. An analysis of the particular conditions required to perform a light scattering experiment on particles in air is presented in detail, together with a simple experimental setup and the data processing procedure. The results reveal that such an experiment is possible and using the setup and the procedure, both simplified to extreme, enables the design of an advanced sensor for particles and fumes that can output the average size of the particles in air
    corecore